Molecular mechanisms of viral evasion from immune surveillance in autophagy

Abstract

Autophagy is a conservative evolutionary established cellular process functioning to maintain cell homeostasis. Furthermore, the cellular autophagy program acts as the primary mechanism of intracellular defense in the cells infected with viruses or other pathogens. However, many viruses are able to modulate the cellular autophagy program by induction or inhibition its individual stages through various mechanisms. Autophagy can function both, as proviral and antiviral mechanism, in the pathogenesis of infection depending on the virus and cell type. This review discusses relevant studies of the mechanisms of interaction between the cellular program of autophagy and viral replication, in particular, flaviviruses, paramyxoviruses, coronaviruses and others. The study of these mechanisms may be important for a better understanding of the pathogenesis of viral infectious diseases and the identification of new therapeutic targets.

Keywords:autophagy; innate immunity; viral replication; viral immune evasion; review

For citation: Gulimov М.К., Ammour Yu.I., Seleznev A.S., Davydova N.V., Zverev V.V., Svitich O.A. Molecular mechanisms ofviral evasion from immune surveillance in autophagy. Immunologiya. 2020; 41 (5): 448-57. DOI: https://doi.org/10.33029/0206-4952-2020-41-5-448-457 (in Russian)

Funding. State task No. АААА-А19-119021890059-5.

Conflict of interests. The authors declare no conflict of interests.

References

1. Deretic V., Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe. 2009; 5 (6): 527–49.

2. Mizushima N., Levine B., Cuervo A.M., et al. Autophagy fights disease through cellular self-digestion. Nature. 2008; 451 (7182): 1069–75.

3. Rabanal-Ruiz Y., Otten E.G., Korolchuk V.I. mTORC1 as the main gateway to autophagy. Essays Biochem. 2017; 61 (6): 565–84.

4. Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014; 20 (3): 460–73.

5. Delgado M., Singh S., De Haro S., Master S., Ponpuak M., Dinkins C., et al. Autophagy and pattern recognition receptors in innate immunity. Immunol. Rev. 2009; 227 (1): 189–202.

6. Lamark T., Svenning S., Johansen T. Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem. 2017; 61 (6): 609–24.

7. Kuchitsu Y., Fukuda M. Revisiting Rab7 functions in mammalian autophagy: Rab7 Knockout Studies. Cells. 2018; 7 (11): 215.

8. Zhirnov O.P. Virus-host interactions. In: Lvov D.K. (eds). Viruses and Viral infections. Moscow: MIA, 2013: 103–0. (in Russian)

9. Schlie K., Westerback A., DeVorkin L., Hughson L. R., Brandon J. M., MacPherson S., et al. Survival of effector CD8+T cells during influenza infection is dependent on autophagy. J. Immunol. 2015; 194 (9): 4277–86.

10. Delorme-Axford E., Donker R.B., Mouillet J.F., Chu T., Bayer A., Ouyang Y., et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc. Natl Acad. Sci. USA. 2013; 110 (29): 12 048–53.

11. Сhoi Y., Bowman J.W., Jung J.U. Autophagy during viral infection – a double-edged sword. Nat. Rev. Microbiol. 2018; 16 (6): 341–54.

12. Jounai N., Takeshita F., Kobiyama K., Sawano A., Miyawaki A., Xin K.Q., et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USА. 2007; 104 (35): 14 050–5.

13. Chen M., Hong M.J., Sun H., Wang L., Shi X., Gilbert B.E., et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 2014; 20 (5): 503–10.

14. Reed M., Morris S.H., Jang S., Mukherjee S., Yue Z., Lukacs N.W. Autophagy-inducing protein beclin-1 in dendritic cells regulates CD4 T cell responses and disease severity during respiratory syncytial virus infection. J. Immunol. 2013; 191 (5): 2526–37.

15. Lussignol M., Queval C., Bernet-Camard M.F., Cotte-Laffitte J., Beau I., Codogno P., et al. The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR. J. Virol. 2012; 87 (2): 859–71.

16. Shi J., Luo H. Interplay between the cellular autophagy machinery and positive-stranded RNA viruses. Acta Biochim. Biophys. Sin. 2012; 44 (5): 375–84.

17. Richards A.L., Jackson W.T. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathogens. 2012; 8 (11): e1003046.

18. Wong J., Zhang J., Si X., Gao G., Mao I., McManus B.M., et al. Autophagosome supports coxsackievirus B3 replication in host cells. J. Virol. 2008; 82 (18): 9143–53.

19. Shi J., Wong J., Piesik P., Fung G., Zhang J., Jagdeo J., et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFkB signaling. Autophagy. 2013; 9 (10): 1591–603.

20. Pásztor K., et al. Rubella virus perturbs autophagy. Med. Microbiol. Immunol. 2014; 203 (5): 323–31.

21. Orosz L., Megyeri K. Well begun is half done: Rubella virus perturbs autophagy signaling, thereby facilitating the construction of viral replication compartments. Med. Hypotheses. 2016; 89: 16–20.

22. Gulimov M.K., Romantsova L.R., Astapenko A.V., Shchetinina Y.R., Prokof’eva E.V., Movsesyan G.V., Zverev V.V., Ammour Y.I. Autophagy regulation by rubella virus. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2019; 1: 36–42. (in Russian)

23. Heaton N.S., Randall G. Dengue virus and autophagy. Viruses. 2011; 3 (8): 1332–41.

24. Lee Y.R., Kuo S.H., Lin C.Y., Fu P.J., Lin Y.S., Yeh T.M., et al. Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Sci. Rep. 2018; 8 (1): 489.

25. Dash S., Chava S., Aydin Y., Chandra P. K., Ferraris P., Chen W., et al. Hepatitis C virus infection induces autophagy as a prosurvival mechanism to alleviate hepatic ER-stress response. Viruses. 2016; 8 (5): 150.

26. Datan E., Roy S.G., Germain G., Zali N., McLean J.E., Golshan G., et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 2016; 7 (3): e2127.

27. Chandra P.K., Gunduz F., Hazari S., Kurt R., Panigrahi R., Poat B., et al. Impaired expression of type I and type II interferon receptors in HCV-associated chronic liver disease and liver cirrhosis. PLoS One. 2014; 9 (11): e114456.

28. Dreux M., Gastaminza P., Wieland S.F., Chisari F.V. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl Acad. Sci. USA. 2009; 106 (33): 14 046–51.

29. Ploen D., Hildt E. Hepatitis C virus comes for dinner: how the hepatitis C virus interferes with autophagy. World J. Gastroenterol. 2015; 21 (28): 8492–507.

30. Kim S.J., Syed G.H., Khan M., Chiu W.W., Sohail M.A., Gish R.G., et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl Acad. Sci. USA. 2014; 111 (17): 6413–8.

31. Ren Y., Li C., Feng L., Pan W., Li L., Wang Q., et al. Proton channel activity of influenza A virus matrix protein 2 contributes to autophagy arrest. J. Virol. 2015; 90 (1): 591–8.

32. Khare D., Godbole N.M., Pawar S.D., Mohan V., Pandey G., Gupta S., et al. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur. J. Nutr. 2012; 52 (4): 1405–15.

33. Zhirnov O.P., Klenk H.D. Influenza A virus proteins NS1 and hemagglutinin along with M2 are involved in stimulation of autophagy in infected cells. J. Virol. 2013; 87 (24): 13 107–14.

34. Liu G., Zhong M., Guo C., Komatsu M., Xu J., Wang Y., et al. Autophagy is involved in regulating influenza A virus RNA and protein synthesis associated with both modulation of Hsp90 induction and mTOR/p70S6K signaling pathway. Int. J. Biochem. Cell Biol. 2016; 72: 100–8.

35. Grégoire I.P., Richetta C., Meyniel-Schicklin L., Borel S., Pradezynski F., Diaz O., et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathogens. 2011; 7 (12): e1002422.

36. Beale R., Wise H., Stuart A., Ravenhill B.J., Digard P., Randow F. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe. 2014; 15 (2): 239–47.

37. Pirooz S., He S., O’Connell D., Khalilzadeh P., Yang Y., Liang C. Viruses customize autophagy protein for efficient viral entry. Autophagy. 2014; 10 (7): 1355–6.

38. Grégoire I.P., Rabourdin-Combe C., Faure M. Autophagy and RNA virus interactomes reveal IRGM as a common target. Autophagy. 2012; 8 (7): 1136–7.

39. Richetta C., Grégoire I.P., Verlhac P., Azocar O., Baguet J., Flacher M., et al. Sustained autophagy contributes to measles virus infectivity. PLoS Pathogens. 2013; 9 (9): e1003599.

40. Rozières A., Viret C., Faure M. Autophagy in measles virus infection. Viruses. 2017; 9: 359.

41. Joubert P.E., Meiffren G., Gregoire I.P., Pontini G., Richetta C., et al. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe. 2009; 6: 354–66.

42. Xia M., Gonzalez P., Li C., Meng G., Jiang A., Wang H., Gao Q., Debatin K.M., Beltinger C., Wei J. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J. Virol. 2014; 88: 5152–64.

43. Ding B., Zhang G., Yang X., Zhang S., Chen L., Yan Q., et al. Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production. Cell Host Microbe. 2014; 15 (5): 564–77.

44. Meng G., Xia M., Wang D., Chen A., Wang Y., Wang H., et al. Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget. 2014; 5 (15): 6365–74.

45. Yang N., Shen H.M. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int. J. Biol. Sci 2020; 16 (10): 1724–31.

46. Carmona-Gutierrez D., Bauer M.A., Zimmermann A., Kainz K., Hofer S. J., Kroemer G., et al. Digesting the crisis: autophagy and coronaviruses. Microb. Cell. 2020; 7 (5): 119–28.

47. Gosert R., Kanjanahaluethai A., Egger D., Bienz K., Baker S.C. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol. 2002; 76 (8): 3697–708.

48. Zhao Z., Thackray L.B., Miller B.C., Lynn T.M, Becker M.M, Ward E., et al. Coronavirus replication does not require the autophagy gene ATG5. Autophagy. 2007; 3: 581–5.

49. Cottam E.M., Maier H.J., Manifava M., Vaux L.C., Chandra-Schoenfelder P., Gerner W., et al. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy. 2011; 7: 1335–47.

50. Prentice E., Jerome W.G., Yoshimori T., Mizushima N., Denison M.R. Coronavirus replication complex formation utilizes components of cellular autophagy. J. Biol. Chem. 2004; 279: 10 136–41.

51. Zhu L., Mou C., Yang X., Lin J., Yang Q. Mitophagy in TGEV infection counteracts oxidative stress and apoptosis. Oncotarget. 2016; 7 (19): 27 122–41.

52. Guo X., Zhang M., Zhang X., Tan X., Guo H., Zeng W., et al. Porcine epidemic diarrhea virus induces autophagy to benefit its replication. Viruses. 2017; 9 (3): E53.

53. Snijder E.J., van der Meer Y., Zevenhoven-Dobbe J., Onderwater J.J.M., van der Meulen J., Koerten H.K., Mommaas A.M. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 2006; 80 (12): 5927–40.

54. Reggiori F., Monastyrska I., Verheije M.H., Calì T., Ulasli M., Bianchi S., et al. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe. 2010; 7 (6): 500–8.

55. Schneider M., Ackermann K., Stuart M., Wex C., Protzer U., Schätzl H.M., Gilch S. Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J. Virol. 2012; 86 (18): 10 112–22.

56. Kindrachuk J., Ork B., Hart B.J., Mazur S., Holbrook M.R., Frieman M.B., et al. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob. Agents Chemother. 2015; 59 (2): 1088–99.

57. Chen X., Wang K., Xing Y., Tu J., Yang X., Zhao Q., Li K., Chen Z. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell. 2014; 5 (12): 912–27.

58. Gassen N.C., Niemeyer D., Muth D., Corman V.M., Martinelli S., Gassen A., et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat. Commun. 2019; 10: 5770.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»