Red blood cells as bactericidal cells, participants and regulators of inflammation

Abstract

The study of the biology of red blood cells has led to revolutionary changes in the understanding of its physiological role. It turned out that these «simple oxygen carriers» are direct participants and regulators of innate immunity reactions. Red blood cells have a unique electrochemical bactericidal mechanism - oxycytosis - based on their ability to acquire an additional triboelectric charge in the mobile medium of the bloodstream and agglutinate circulating bacteria. At the same time, binding to the surface of red blood cells causes the release of reactive oxygen species with antibacterial activity from oxygenated hemoglobin. The bacteria killed in this way cease to be retained on the surface of the red blood cell, return to the blood plasma, after which they are captured by Kupffer cells in the liver and macrophages in the spleen. The participation of red blood cells in immune system reactions is also associated with the ability to bind endogenous and exogenous inflammatory molecules, including chemokines, nucleic acids and components of pathogens, to secrete lipid mediators, etc. The participants in the reactions of innate immunity are the multiscale internal structures of red blood cells (hemoglobin, heme, globins, various alarmins) that can induce and control the development of inflammatory protective and pathological reactions. Under certain conditions, the implementation of protection mechanisms initiated by red blood cells can also cause unwanted destructive responses to infection. In general, depending on the microenvironment, red blood cells can either support anti-inflammatory conditions or promote immune activation. The information presented in this review provides an understanding of the role of red blood cells in the generalization of infections, the pathogenetic role of hemolysis and extracellular hemoglobin in conditions of ischemia/reperfusion. Further research in this area will help identify new therapeutic targets and increase the effectiveness of the treatment of many serious, life-threatening conditions and diseases. Literature was searched using the original publications and databases PubMed, MedLine, Scopus, Google Scholar, etc.

Keywords:red blood cells; oxycytosis; hemoglobin; heme; cytokines; endothelium; white blood cells; platelets; in nate immunity; review

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

For citation: Serebryanaya N.B., Yakutseni PP. Red blood cells as bactericidal cells, participants and regulators of inflammation. Immunologiya. 2020; 41 (5): 458-69. DOI: https://doi.org/10.33029/0206-4952-2020-41-5-458-69

Reference

1. Belyaeva A.S., Van’ko L.V., Matveeva N.K., Krechetova L.V. Neutrophilic granulocytes as regulators of immunity. Immunologiya. 2016; 37 (2): 129–33. (in Russian)

2. Khaitov R.M., Pinegin B.V., Pashchenkov M.V. Respiratory tract epithelial cells as equal participants in innate immunity and potential targets for immunotropic drugs. Immunologiya. 2020; 41 (2): 107–13. (in Russian)

3. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 1. Basic characteristics of platelets as inflammatory cells. Meditsinskaya immunologiya. 2018; 20 (6): 785–96. (in Russian)

4. Anderson H.L., Brodsky I.E., Mangalmurti N.S. The evolving erythrocyte: red blood cells as modulators of innate immunity. J. Immunol. 2018; 201 (5): 1343–51.

5. Pretini V., Koenen M.H., Kaestner L., Fens M.H.A.M., Schiffelers R.M., Bartels M., et al. Red blood cells: chasing interactions. Front. Physiol. 2019; 10: 945–61.

6. Rother R.P., Bell L., Hillmen P., Gladwin M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005; 293 (13): 1653–62.

7. Minasyan H. Erythrocyte and blood antibacterial defense. Eur. J. Microbiol. Immunol. (Bp). 2014; 4 (2): 138–43.

8. Bianconi E., Piovesan A., Facchin F., Beraudi A., Casadei E., Frabetti F., et al. An estimation of the number of cells in the human body [published correction appears in Ann. Hum. Biol. 2013; 40 (6): 471]. Ann. Hum. Biol. 2013; 40 (6): 463–71.

9. Higgins J.M. Red Blood cell population dynamics. Clin. Lab. Med. 2015; 35 (1): 43–57.

10. Willekens F.L., Roerdinkholder-Stoelwinder B., Groenen-Döpp Y.A., Boss H.J., Bosmanet G.J.C.G.M., van den Bos A.G., et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood. 2003; 101 (2): 747–51.

11. Franco R.S., Puchulu-Campanella M.E., Barber L.A., Palasscak M.B., Joiner C.H., Low P.S., et al. Changes in the properties of normal human red blood cells during in vivo aging. Am. J. Hematol. 2013; 88 (1): 44–51.

12. Constantino B.T., Rivera G.K.Q. Cutoff value for correcting white blood cell count for nucleated red blood cells: what is it? Why is it important? Lab. Med. 2019; 50 (4): e82–90.

13. Stachon A., Segbers E., Holland-Letz T., Kempf R., Hering S., Krieg M. Nucleated red blood cells in the blood of medical intensive care patients indicate increased mortality risk: a prospective cohort study. Crit. Care. 2007; 11 (3): R62.

14. Purtle S.W., Horkan C.M., Moromizato T., Gibbons F.K., Christopher K.B. Nucleated red blood cells, critical illness survivors and postdischarge outcomes: a cohort study. Crit. Care. 2017; 21 (1): 154.

15. Moras M., Lefevre S.D., Ostuni M.A. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front. Physiol. 2017; 8: 1076.

16. Murata-Hori Ji P.M., Lodish H.F. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol. 2011; 21 (7): 409–15.

17. Boas F.E., Forman L., Beutler E. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc. Natl Acad. Sci. USA. 1998; 95 (6): 3077–81.

18. Lang K.S., Lang P.A., Bauer C., Duranton C., Wieder T., Huber S.M., et al. Mechanisms of suicidal erythrocyte death. Cell. Physiol. Biochem. 2005; 15 (5): 195–202.

19. Chukhlovin A.B. Apoptosis and red blood cell echinocytosis: common features. Scanning Microsc. 1996; 10 (3): 795–804.

20. Passantino L., Altamura M., Cianciotta A., et al. Maturation of fish erythrocytes coincides with changes in their morphology, enhanced ability to interact with Candida albicans and release of cytokine-like factors active upon autologous macrophages. Immunopharmacol. Immunotoxicol. 2004; 26 (4): 573–85.

21. Workenhe S.T., Kibenge M.J., Wright G.M., Wadowska D.W., Groman D.B., Kibenge F.S. Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes. Virol. J. 2008; 5: 36.

22. Morera D., MacKenzie S.A. Is there a direct role for erythrocytes in the immune response? Vet. Res. 2011; 42 (1): 89.

23. Baum J., Ward R.H., Conway D.J. Natural selection on the erythrocyte surface. Mol. Biol. Evol. 2002; 19 (3): 223–9.

24. Minasyan H.A. Erythrocyte and leukocyte: two partners in bacteria killing. Int. Rev. Immunol. 2014; 33 (6): 490–7.

25. Pierigè F., Serafini S., Rossi L. Magnani M. Cell-based drug delivery. Adv. Drug Deliv. Rev. 2008; 60 (2): 286–95.

26. Bicker H., Höflich C., Wolk K., Vogt K., Volk H.D., Sabat R. A simple assay to measure phagocytosis of live bacteria. Clin. Chem. 2008; 54 (5): 911–5.

27. Herant M., Heinrich V., Dembo M. Mechanics of neutrophil phagocytosis: experiments and quantitative models. J. Cell Sci. 2006; 119 (Pt 9): 1903–13.

28. Wilson W.W., Wade M.M., Holman S.C., Champlin F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol Methods. 2001; 43 (3): 153–64.

29. Minasyan H. Mechanisms and pathways for the clearance of bacteria from blood circulation in health and disease. Pathophysiology. 2016; 23 (2): 61–6.

30. Alizadehrad D., Imai Y., Nakaaki K., Ishikawa T., Yamaguchi T. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. J. Biomech. 2012; 45 (15): 2684–9.

31. Mendonça R., Silveira A.A.A., Conran N. Red cell DAMPs and inflammation. Inflamm. Res. 2016; 65: 665–78.

32. Lin T., Sammy F., Yang H., Thundivalappil S., Hellman J., Tracey K.J., Warren H.S. Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J. Immunol. 2012; 189: 2017–22.

33. Du R., Ho B., Ding J.L. Rapid reprogramming of haemoglobin structure-function exposes multiple dual-antimicrobial potencies. EMBO J. 2010; 29: 632–42.

34. Bahl N., Winarsih I., Tucker-Kellogg L, Ding J.L. Extracellular haemoglobin upregulates and binds to tissue factor on macrophages: implications for coagulation and oxidative stress. Thromb. Haemost. 2014; 11 167–78.

35. Pishchany G., McCoy A.L., Torres V.J., Krause G.C., Crowe J.E., Fabry M.E., et al. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe. 2010; 8 (6): 544–50.

36. Tullius M.V., Harmston C.A., Owens C.P., Chim N., Morse R.P., McMath L.M., et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc. Natl Acad. Sci. USA. 2011; 108 (12): 5051–6.

37. Alayash A.I., Patel R.P., Cashon R.E. Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antioxid. Redox Signal. 2001; 3 (2): 313–27.

38. Lee S.K., Ding J.L. A perspective on the role of extracellular hemoglobin on the innate immune system. DNA Cell Biol. 2013; 32: 36–40.

39. Goubau D., Deddouche S., Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013; 38 (5): 855–69.

40. Reiter C.D., Wang X., Tanus-Santos J.E., Hogg N., Cannon III R.O., Schechter A.N., et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 2002; 8 (12): 1383–9.

41. Gladwin M.T., Crawford J.H., Patel R.P. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic. Biol. Med. 2004; 36 (6): 707–17.

42. Helms C.C., Marvel M., Zhao W., Stahle M., Kato G.J., Christ G., et al. Mechanisms of hemolysis-associated platelet activation. J. Thromb. Haemost. 2013; 11 (12): 2148–54.

43. Auten R.L., Davis J.M. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr. Res. 2009; 66 (2): 121–7.

44. Schechter A.N. Hemoglobin research and the origins of molecular medicine. Blood. 2008; 112 (10): 3927–38.

45. Belcher J.D., Nath K.A., Vercellotti G.M. Vasculotoxic and proinflammatory effects of plasma heme: cell signaling and cytoprotective responses. ISRN Oxidative Med. 2013; 2013: 831596.

46. Lee S.K., Goh S.Y., Wong Y.Q., Ding L. Response of neutrophils to extracellular haemoglobin and LTA in human blood system. EBioMedicine. 2015; 2: 225–33.

47. Yamada N., Yamaya M., Okinaga S., Lie R., Suzuku T., Nakayama K., et al. Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am. J. Respir. Cell Mol. Biol. 1999; 21 (3): 428–35.

48. Gozzelino R., Jeney V., Soares M.P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010; 50: 323–54.

49. Balla G., Jacob H.S., Balla J., Rosenberg M., Nath K., Apple F., et al. Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 1992; 267 (25): 18 148–53.

50. Mak P., Wójcik K., Silberring J., Dubin A. Antimicrobial peptides derived from heme-containing proteins: hemocidins. Antonie Van Leeuwenhoek. 2000; 77 (3): 197–207.

51. Yang H., Wang H., Bernik T.R., Ivanova S., Ulloa L., Roth J., et al. Globin attenuates the innate immune response to endotoxin. Shock. 2002; 17: 485–90.

52. Yang Q., Bai S.Y., Li L.F., Li S., Zhang Y., Munir M., Qui H.-J. Human hemoglobin subunit beta functions as a pleiotropic regulator of RIG-I/MDA5-mediated antiviral innate immune responses. J. Virol. 2019; 93 (16): e00718-19.

53. Idzko M., Ferrari D., Riegel A.K., Eltzschig H.K. Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood. 2014; 124 (7): 1029–37.

54. Burnstock G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal. 2015; 11 (4): 411–34.

55. Jiang H., Anderson G.D., McGiff J.C. Red blood cells (RBCs), epoxyeicosatrienoic acids (EETs) and adenosine triphosphate (ATP). Pharmacol. Rep. 2010; 62: 468–74.

56. Sluyter R. P2X and P2Y receptor signaling in red blood cells. Front. Mol. Biosci. 2015; 2: 60.

57. Perregaux D.G., McNiff P., Laliberte R., Conklyn M., Gabel C.A. ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J. Immunol. 2000; 165 (8): 4615–23.

58. Albertini von M., Palmetshofer A., Kaczmarek E., Koziak K., Stroka D., Grey S.T., Stuhlmeier K.M., Robson S.C. Extracellular ATP and ADP activate transcription factor NF-kappa B and induce endothelial cell apoptosis. Biochem. Biophys. Res. Commun 1998; 248 (3): 822–9.

59. McClenahan D., Hillenbrand K., Kapur A., Carlton D., Czuprynski C. Effects of extracellular ATP on bovine lung endothelial and epithelial cell monolayer morphologies, apoptoses, and permeabilities. Clin. Vaccine Immunol. 2009; 16 (1): 43–8.

60. Huck O., Elkaim R., Davideau J.L., Tenenbaum H. Porphyromonas gingivalis-impaired innate immune response via NLRP3 proteolysis in endothelial cells. Innate Immun. 2015; 21 (1): 65–72.

61. Zhang Y., Xia Y. Adenosine signaling in normal and sickle erythrocytes and beyond. Microbes Infect. 2012; 14 (10): 863–73.

62. Lee Y.L., King M.B., Gonzalez R.P., Breward S.B., Frotan M.A., Gillespe M.N., et al. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J. Surg. Res. 2014; 191 (2): 286–9.

63. Zhang Q, Raoof M, Chen Y, Sumi Y., Sursal T., Junger W., et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464 (7285): 104–7.

64. Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012; 36 (3): 401–14.

65. Rider P., Voronov E., Dinarello C.A., Apte R.N., Cohen I. Alarmins: feel the stress. J. Immunol. 2017; 198 (4): 1395–402.

66. Wei J.X., Zhao J., Schrott V., Zhang Y.Z., Gladwin M., Bullock G., Zhao Y.T. Red blood cells store and release interleukin-33. J. Investig. Med 2015; 63 (6): 806–10.

67. Griesenauer B., Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front. Immunol. 2017; 8: 475.

68. Molofsky A.B., Savage A.K., Locksley R.M. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity. 2015; 42 (6): 1005–19.

69. Bu X., Zhang T., Wang C., Ren T., Wen Z. IL-33 reflects dynamics of disease activity in patients with autoimmune hemolytic anemia by regulating autoantibody production. J. Transl. Med. 2015; 13: 381.

70. Patterson S.T., Li J., Kang J.A., Wickrema A., Williams D.B., Reithmeier R.A. Loss of specific chaperones involved in membrane glycoprotein biosynthesis during the maturation of human erythroid progenitor cells. J. Biol. Chem. 2009; 284 (21): 14 547–57.

71. Kim J.Y., Yenari M.A. The immune modulating properties of the heat shock proteins after brain injury. Anat. Cell Biol. 2013; 46 (1): 1–7.

72. Vabulas R.M., Ahmad-Nejad P., Ghose S., Kirschning C.J., Issels R.D., Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 2002; 277 (17): 15 107–12.

73. Lin S., Yin Q., Zhong Q., Lv F.-L., Zhou Y., Li J.-Q., et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflammation. 2012; 9: 46.

74. Kwon M.S., Woo S.K., Kurland D.B., Yoon S.H., Palmer A.F., Baerjee U., et al. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int. J. Mol. Sci. 2015; 16 (3): 5028–46.

75. Fortes G.B., Alves L.S., de Oliveira R., Dutra F.F., Rodrigues D., Fernandez P.L., et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012; 119 (10): 2368–75.

76. Teng W., Wang L., Xue W., Guan C. Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediators Inflamm. 2009; 2009: 473276.

77. Turner M.D., Nedjai B., Hurst T., Pennington D.J. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta. 2014; 1843 (11): 2563–82.

78. Qari M.H., Dier U., Mousa S.A. Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease. Clin. Appl. Thromb. Hemost. 2012; 18 (2): 195–200.

79. Randall L.M., Engwerda C.R. TNF family members and malaria: old observations, new insights and future directions. Exp. Parasitol. 2010; 126 (3): 326–31.

80. Mohandas N., Gallagher P.G. Red cell membrane: past, present, and future. Blood. 2008; 112 (10): 3939–48.

81. Darbonne W.C., Rice G.C., Mohler M.A., Apple T., Hebert C.A., Valente A.J., et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J. Clin. Invest. 1991; 88 (4): 1362–9.

82. Szabo M.C., Soo K.S., Zlotnik A., Schall T.J. Chemokine class differences in binding to the Duffy antigen-erythrocyte chemokine receptor. J. Biol. Chem. 1995; 270 (43): 25 348–51.

83. Lee J.S., Wurfel M.M., Matute-Bello G., Frevert G.W., Rosengart M.R., Ranganathanet M., et al. The Duffy antigen modifies systemic and local tissue chemokine responses following lipopolysaccharide stimulation. J. Immunol. 2006; 177 (11): 8086–94.

84. Fukuma N., Akimitsu N., Hamamoto H., Kusuhara H., Sugiyama Y., Sekimizu K. A role of the Duffy antigen for the maintenance of plasma chemokine concentrations. Biochem. Biophys. Res. Commun. 2003; 303 (1): 137–9.

85. Xiong Z., Cavaretta J., Qu L., Stolz D.B., Triulzi D., Lee J.S. Red blood cell microparticles show altered inflammatory chemokine binding and release ligand upon interaction with platelets. Transfusion. 2011; 51 (3): 610–21.

86. Miller L.H., Mason S.J., Clyde D.F., McGinniss M.H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 1976; 295 (6): 302–4.

87. Beck Z., Brown B.K, Wieczorek L., Peachman K., Matyas G.R., Polonis V.R., et al. Human erythrocytes selectively bind and enrich infectious HIV-1 virions. PLoS One. 2009; 4 (12): e8297.

88. He W., Neil S., Kulkarni H., Wright E., Agan B.K., Marconi V.C., et al. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe. 2008; 1: 2–62.

89. Khaitov R.M., Alexeev L.P., Gudima G.O., Kofiadi I.A. Allelic variants of human genes affecting HIV intracellular life cycle and regulating immune response to HIV infection. Byulleten’ sibirskoy meditsiny. 2019; 18 (1): 119–30. (in Russian)

90. Khaitov R.M., Alexeev L.P., Kofiadi I.A., Gudima G.O. Genetic factors influencing HIV entry into target cells. Byulleten’ sibirskoy meditsiny. 2019; 18 (1): 131–41. (in Russian)

91. Stone M., Bakkour S., Lee T.H., Lanteri M., Simmons G., Brambilla D., et al. Zika RNA persistence in blood and body fluids and clinical outcomes in infected blood donors. Transfusion. 2017; 57: 4A.

92. Hotz M.J., Qing D., Shashaty M.G.S, Zhang P., Faust H Sondheimer N., et al. Red blood cells homeostatically bind mitochondrial DNA through TLR9 to maintain quiescence and to prevent lung injury. Am. J. Respir. Crit. Care Med. 2018; 197 (4): 470–80.

93. Ewald S.E., Engel A., Lee J., Wang M., Bogyo M., Barton G.M. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 2011; 208 (4): 643–51.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»