Epithelial cells of the respiratory tract as equal participants of innate immunity and potential targets for immunotropic drugs

Abstract

A new viewpoint of respiratory epithelial cells as an important part of innate immunity is considered in the review. Due to the fact that epithelial cells of the respiratory tract mucosa are the first line of defense that prevents the penetration of microbes into the internal environment of the body, the data presented are important in the context of fighting viral and bacterial infections by epithelial cells activation. Special attention is devoted to the receptors and signaling proteins of epithelial cells. The analysis of the respiratory epithelial cells’ role as an important component of the innate immune response arises the question of creating and developing approaches that can increase the functional activity of epithelial cells. In conclusion, the possibility of using medicines based on muramyldipeptides (MDP) and, in particular, GMDP, for the prevention and treatment of viral and bacterial infections of the respiratory, gastrointestinal and urogenital tracts is considered.

Keywords:epithelial cells; innate immunity; immunotropic drugs; activation of immunity; receptors; signal proteins

For citation: Khaitov R.M., Pinegin B.V., Pashenkov M.V Epithelial cells of the respiratory tract as equal participants of innate immunity and potential targets for immunotropic drugs. Immunologiya. 2020; 41 (2): 107-13. DOI: 10.33029/0206-4952-2020-41-2-107-113 (in Russian)

Funding. The study was supported by the Russian Science Foundation grant 16-15-10314.

Conflict of interests. The authors declare no conflict of interests.

References

1. Barnes P.J., Chung F., Page C.P. Inflammatory mediators of asthma: an update. Pharmacol. Rev. 1998; 50: 515–96.

2. Weitnauer M., Mijosek V., Dalpke A.H. Control of local immunity by airway epithelial cells. Mucosal Immunol. 2016; 9: 287–98.

3. Kim K.C. Role of epithelial mucins during airway infection. Pulm. Pharmacol. Ther. 2012; 25: 415–9.

4. Tilley A.E., Walters M.S., Shaykhiev R., Crystal R.G. Cilia dysfunction in lung disease. Annu. Rev. Physiol. 2015; 77: 379–406.

5. Parker D., Prince A. Innate Immunity in the respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 2011; 45: 189–201.

6. Denney L., Ho L.-P. The role of respiratory epithelium in host defence against influenza virus infection. Biomed. J. 2018; 41: 218–33.

7. Kozlov I.G. Microbiota, mucosal immunity and antibiotics: subtleties of interaction. Rossiyskiy meditsinskiy zhurnal. 2018; (1): 1–11. (in Russian)

8. Mayer A.K., Muehmer M., Mages J., Gueinzius K., Hess C., Heeg K., Bals R., Lang R., Dalpke A.H. Differential recognition of TLR-different microbial ligand in human bronchial epithelial cells. J. Immunol. 2007; 178: 3134–42.

9. Gon Y., Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol. Int. 2018; 67: 12–7.

10. Ioannidis I., Ye F., McNally B., Willette M., Flano F. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J. Virol. 2013; 87: 3261–70.

11. Becker M.N., Diamond G., Verghese W., Randell S.H. CD14-dependent lipopolysaccharide-induced beta-defensin expression of human tracheobronchial epithelium. J. Biol. Chem. 2000; 275: 29731.

12. Jia H.P., Kline J.N., Penisten A., Apicella M.A., Gioannini T.L., Weiss J., McCray P.B. Jr. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am. J. Physiol. Lung Cell Mol. Physiol. 2004; 287: L428–37.

13. Gewirtz A.T., Navas T.A., Lyons S., Godowski P.J., Madara J.L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 2001; 167: 1882–5.

14. Lee J., Mo J.H., Katakura K., Alkalay I., Rucker A.N., Liu Y.T., Lee H.K., Shen C., Cojocaru G., Shenouda S., Kagnoff M., Eckmann L., Ben-Neriah Y., Raz E. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 2006; 8: 1327–36.

15. Vamadevan A.S., Fukata M., Arnold E.T., Thomas L.S., Hsu D., Abreu M.T. Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immun. 2010; 16: 93–103.

16. Shaykhiev R., Sierigk J., Herr C., Krasteva G., Kummer W., Bals R. The antimicrobial peptide cathelicidin enhances activation of lung epithelial cells by LPS. FASEB J. 2010; 24: 4756–66.

17. Whitsett J.A., Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 2014; 16: 27–35.

18. Roan F., Obata-Ninomiya K., Ziegler S.F. Epithelial cell-derived cytokines: more than just signaling the alarm. J. Clin. Invest. 2019; 129: 1441–51.

19. Takeuchi O., Akira S. MyD88 as a bottle neck in Toll/IL-1 signalling. Curr. Top. Microbiol. Immmunol. 2002; 270: 155–67.

20. Poynter M.E., Irvin C.G., Jansenn-Heininger Y.M.W. A prominent role for airway epithelial NF-κB activation in lipopolysaccharide-induced airway inflammation. J. Immunol. 2003; 170: 6257–65.

21. Medzhitov R.M. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001; 1: 135–45.

22. Power M.R., Peng Y., Maydanski E., Marshall J.S., Lin T.J. The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J. Biol. Chem. 2004; 279: 49 315–22.

23. Skerrett S.J., Liggitt H.D., Hajjar A.M., Wilson C.B. Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J. Immunol. 2004; 172: 3377–81.

24. von Bernuth H., Picard C., Jin Z., Pankla R., Xiao H., Ku C.L., Chrabieh M., Mustapha I.B., Ghandil P., Camcioglu Y., Vasconcelos J., Sirvent Nedes M., et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008; 321: 691–6.

25. Mijares L.A., Wangdi T., Sokol C., Homer R., Medzhitov R., Kazmierczak B.I. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an interleukin-1 dependent pathway. J. Immunol. 2011; 186: 7080–8.

26. Shornick L.P., Wells A.G., Zhang Y., Patel A.C., Huang G., Takami K., Sosa M., Shukla N.A., Agapov E., Holtzman M.J. Airway epithelial versus immune cell Stat1 function for innate defense against respiratory viral infection. J. Immun. 2008; 180: 3319–28.

27. Farkas L., Stoelcker B., Jentsch N., Heitzer S., Pfeifer M., Schulz C. Muramyl dipeptide modulates CXCL-8 release of BEAS-2B cells via NOD2. Scand. J. Immunol. 2008; 68: 315–22.

28. Qiu H.N., Wong C.K., Chul I.M., Hu S., Lam C.M. Muramyl dipeptide mediated activation of human bronchial epithelial cells interacting with basophils: a novel mechanism of airway inflammation. Clin. Exp. Immunol. 2013; 172: 81–94.

29. LeBel M., Gosselin J. Leukotriene B4 enhances NOD2-dependent innate response against Influenza virus infection. PLoS One. 2015; 10 (10): e0139856.

30. Lv Q., Yang M., Liu X., Zhou L., Xiao Z., Chen X., Chen M., Xie X., Hub J. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells. Molecules. 2012; 17: 3599–608.

31. Goffic R.L., Pothlicher J., Vitour D., Fujita T., Meurs E., Chignard M., Si-Tahar M. Cutting edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J. Immunol. 2007; 178: 3368–72.

32. Goffic R.L., Balloy V., Lagranderie M., Alexopoulou L., Escriou N., Flavell R., Chignard M., Si-Tahar M. Detrimental contribution of the Toll-like receptor (TLR) 3 to Influenza A virus-induced acute pneumonia. PLoS Pathogens. 2006; 2 (6): e53.

33. Khaitov M.R., Laza-Stanca V., Edwards M.R., Walton R.P., Rohde G., Conton M., et al. Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy. 2009; 64: 375–86.

34. Wang J., Oberley-Deegan R., Wang S., Nikrad M., Funk C.J., Hartshorn K.I., et al. Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-lambda 1) in response to influenza A infection. J. Immnol. 2009; 182: 1296–304.

35. Wack A., Terzynska-Dyla E., Hartmann R. Guarding the frontiers: the biology of type III interferons. Nat. Immunol. 2015; 16: 802–9.

36. Nice T.J., Baldridge M.T., McCune B.T., Nortman J.M., Lazear H.M., Artyomov M., et al. Interferon-lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science. 2015; 347 (6219): 269–73.

37. Khaitov R.M. Immunomodulators: myths and reality. Immunologiya.2020; 41 (2). (in Russian)

38. Khaitov R.M. The main target of immunological actions of GMDP (Likopid). Immunologiya. 1994; 2: 47–50. (in Russian)

39. Ivanov V.T., Khaitov R.M., Andronova T.M., Pinegin B.V. Lycopid (glucosaminylmuramyldipeptide) – a new Russian highly effective immunomodulator for the treatment and prevention of diseases associated with secondary immunological insufficiency. Immunologiya. 1996; 2: 4–6. (in Russian)

40. Pinegin B.V., Andronova T.M. Some theoretical and practical issues of clinical application of immunomodulator Likopid. Immunologiya, 1998; 18: 60–3. (in Russian)

41. Pinegin B.V., Khaitov R.M. Modern principles of immunotropic drugs creation. Immunologiya. 2019; 40 (6): 57–62. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»