SARS-CoV-2 virus and other epidemic coronaviruses: pathogenetic and genetic factors for the development of infections

Abstract

At the end of May 2020, more than 6.1 million cases of SARS-CoV-2 virus infection were registered in the world and more than 370 000 were fatal. First time outbreak of new infection occurred among residents of Wuhan, China at the end of 2019. Mortality rate for the current COVID-19 epidemic is significantly lower than for severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS). However, the SARS-CoV-2 virus spreads much faster than SARS and MERS and causes far more deaths totally than both SARS and MERS combined. Information on factors that affect the development, course and outcome of infections caused by coronaviruses stated in the article was obtained from investigations carried out during the period of previous epidemics of coronavirus infections and during the current SARS-CoV-2 pandemic. The following factors are discussed in the present article: the direct cytopathic effect of viruses, infection of the immune system cells, the role of inflammation in the development of the disease, innate immunity factors, autoimmune reactions, features of the expression of immunoregulatory molecules, the role of host organism factors, including genetic ones.

Keywords:COVID-19; SARS-CoV-2; SARS; MERS; cytopathic effect of the virus; antiviral immunity; autoimmunity; inflammation; cytokines; chemokines, host factors; immunogenetics; HLA genes; non-HLA genes; peptide vaccines

For citation: Boldyreva M.N. SARS-CoV-2 virus and other epidemic coronaviruses: pathogenetic and genetic factors for the development of infections. Immunologiya. 2019; 41 (3): 197-205. DOI: 10.33029/0206-4952-2020-41-3-197-205 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The author declares no conflict of interests.

References

1. World Health Organization. Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection [published online ahead of print January 21, 2020]. URL: https://apps.who.int/iris/bitstream/handle/10665/330374/WHO-2019-nCoV-laboratory-2020.1-eng.pdf.

2. Li G., Fan Y., Lai Y., et al. Coronavirus infections and immune responses. J. Med. Virol. 2020; 92: 424–32.

3. World Health Organization. Novel Coronavirus (2019-nCoV) situation report-2 [published online ahead of print January 21, 2020]. URL: https://www.who.int/docs/default-source/coronaviruse/situationreports/20200122-sitrep-2-2019-ncov.pdf.

4. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) [published online ahead of print January 21, 2020]. URL: https://www.who.int/emergencies/mers-cov/en/

5. World Health Organization. WHO MERS global summary and assessment of risk [published online ahead of print January 21, 2020]. URL: https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1

6. Koh D., Sng J. Lessons from the past: perspectives on severe acute respiratory syndrome. Asia Pac. J. Public Health. 2010; 22 (3 Suppl): 132s–6s.

7. Zhao Y., Zhao Z., Wang Y. Single-Cell RNA expression proling of ACE2, the putative receptor of Wuhan 2019-nCoV. BioRxiv. 2020. URL: https://doi.org/10.1101/2020.01.26.919985

8. Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol. Sin. 2020. URL: https://doi.org/10.1007/s12250-020-00207-4

9. Gu J., Korteweg Ch. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 2007; 170: 1136–47. DOI: 10.2353/ajpath.2007.061088.

10. Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN. 2020. URL: https://doi.org/10.2139/ssrn.3527420

11. Drosten C., Gunther S., Preiser W., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348: 1967–76.

12. Sims A.C., Baric R.S., Yount B., et al. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol. 2005; 79: 15 511–24.

13. He L., Ding Y., Zhang Q., et al. Expression of elevated levels of pro-inflammatory cytokines in SARSCoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 2006; 210: 288–97.

14. Пащенков М.В., Хаитов М.Р. Иммунный ответ против эпидемических коронавирусов. Иммунология. 2020; 41 (1): 5–18. [Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020; 41 (1): 5–18. DOI: 10.33029/0206-4952-2020-41-1-5-18. (in Russian)]

15. Yan H., Xiao G., Zhang J., et al. SARS coronavirus induces apoptosis in Vero E6 cells. J. Med. Virol. 2004; 73: 323–31.

16. Tan Y.J., Fielding B.C., Goh P.Y., et al. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol. 2004; 78: 14 043–7.

17. Law P.T., Wong C.H., Au T.C., et al. The 3a protein of severe acute respiratory syndrome associated coronavirus induces apoptosis in Vero E6 cells. J. Gen. Virol. 2005; 86: 1921–30.

18. Yang Y., Xiong Z., Zhang S., et al. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem. J. 2005; 392: 135–43.

19. Xu J., Qi L., Chi X., et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol. Reprod. 2006; 74: 410–6.

20. Chau T.N., Lee K.C., Yao H., et al. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology. 2004; 39: 302–10.

21. Wei L., Sun S., Xu C.H., Zhang J., Xu Y., Zhu H., Peh S.C., Korteweg C., McNutt M.A., Gu J. Pathology of the thyroid in severe acute respiratory syndrome. Hum. Pathol. 2007; 38: 95–102.

22. Saghazadeh A., Rezaei N. Immune-epidemiological parameters of the novel coronavirus – a perspective. Expert Rev. Clin. Immunol. 2020. DOI: 10.1080/1744666X.2020.1750954.

23. Marzi A., Gramberg T., Simmons G, DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 2004; 78: 12 090–5.

24. Kuba K., Imai Y., Rao S., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005; 11: 875–9.

25. Griffith J.W., Sokol C.L., Luster A.D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 2014; 32: 659–702. DOI: 10.1146/annurev-immunol-032713-120145.

26. Jiang Y., Xu J., Zhou C., et al. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med. 2005; 171: 850–7.

27. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. URL: https://doi.org/10.1016/S0140-6736(20)30183-5

28. Tang N.L., Chan P.K., Wong C.K., et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin. Chem. 2005; 51: 2333–40.

29. Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020 Feb 18 [published online ahead of print]. DOI: 10.1016/S2213-2600(20)30076-X.

30. Guan W.J., Ni Z.Y., Hu Y., et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. 2020. URL: https://doi.org/10.1101/2020.02.06.20020974

31. Yen Y.T., Liao F., Hsiao C.H., et al. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J. Virol. 2006; 80: 2684–93.

32. Law H.K., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W., Nicholls J.M., Peiris J.S., Lau Y.L. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005; 106: 2366–74.

33. Cheung C.Y., Poon L.L., Ng I.H., Luk W., Sia S.F., Wu M.H., Chan K.H., Yuen K.Y., Gordon S., Guan Y., Peiris J.S. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J. Virol. 2005; 79: 7819–26.

34. Xiong Y., Liu Y., Cao L., Wang D., et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg. Microbes Infect. 2020; 9 (1): 761–70. DOI: 10.1080/22221751.2020.1747363.

35. Lee C.H., Chen R.F., Liu J.W., et al. Altered p38 mitogen-activated protein kinase expression in different leukocytes with increment of immunosuppressive mediators in patients with severe acute respiratory syndrome. J. Immunol. 2004; 172: 7841–7.

36. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., Goor H.V. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus – a first step in understanding SARS pathogenesis. J. Pathol. 2004; 203: 631–7.

37. Chen I.Y., Moriyama M., Chang M.F., Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol. 2019; 10: 50. DOI: 10.3389/fmicb.2019.00050.

38. Fink S.L., Cookson B.T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005; 73: 1907–16.

39. Nicholls J.M., Poon L.L., Lee K.C. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003; 361: 1773–8.

40. Peiris J.S., Yuen K.Y., Osterhaus A.D., Stohr K. The severe acute respiratory syndrome. N. Engl. J. Med. 2003; 349: 2431–41.

41. Zhang L., Zhang F., Yu W., et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J. Med. Virol. 2006; 78 (1): 1–8.

42. Liu L., Wei Q., Lin Q., et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019; 4 (4): e123158. DOI: 10.1172/jci.insight.123158.

43. Chan K.H., Poon L.L., Cheng V.C., et al. Detection of SARS coronavirus in patients with suspected SARS. Emerg. Infect. Dis. 2004; 10: 294–9.

44. Totura A.L., Baric R.S. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr. Opin. Virol. 2012; 2 (3): 264–75.

45. Jia H.P., Look D.C., Shi L., et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 2005; 79: 14 616–21.

46. O’Brien T.R., Thomas D.L., Jackson S.S., et al. Weak induction of interferon expression by SARS-CoV-2 supports clinical trials of interferon lambda to treat early COVID-19. Clin. Infect. Dis. 2020. URL: https://doi.org/10.1093/cid/ciaa453

47. Kotenko S.V., Gallagher G., Baurin V.V., et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003; 4: 69–77.

48. Sheppard P., Kindsvogel W., Xu W., et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003; 4: 63–8.

49. Crotta S., Davidson S., Mahlakoiv T., et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathogens. 2013; 9: e1003773.

50. Galani I.E., Triantafyllia V., Eleminiadou E.E., et al. Interferon-lambda mediates nonredundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity. 2017; 46: 875–90.e6.

51. Klinkhammer J., Schnepf D., Ye L., et al. IFN-lambda prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife. 2018; 7: e33354.

52. Chan R.W.Y., Chan M.C.W., Agnihothram S., et al. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J. Virol. 2013; 87: 6604–14.

53. Zhou J., Chu H., Li C., et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J. Infect. Dis. 2013; 209: 1331–42.

54. Chu H., Chan J.F.-W., Wang Y., et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin. Infect. Dis. 2020 Apr 9.

55. Medzhitov R., Janeway C. Jr. Innate immunity. N. Engl. J. Med. 2000; 343: 338–44.

56. Ip W.K., Chan K.H., Law H.K., et al. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis. 2005; 191: 1697–704

57. Tseng C.T., Perrone L.A., Zhu H., et al. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J. Immunol. 2005; 174: 7977–85.

58. Lin Y.S., Lin C.F., Fang Y.T., et al. Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clin. Exp. Immunol. 2005; 141: 500–8.

59. Yang Y.H., Huang Y.H., Chuang Y.H., et al. Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)-associated coronavirus infection. J. Med. Virol. 2005; 77: 1–7.

60. Qin С., Zhou L., Hu Z., et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020. DOI: 10.1093/cid/ciaa248.

61. Yao X.H., Li T.Y., He Z.C., et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chin. J. Pathol. 2020; 49: E009. DOI: 10.3760/cma.j.cn112151-20200312-00193.

62. Zhang W., Zhao Y., Zhang F., et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin. Immunol. 2020. URL: https://doi.org/10.1016/j.clim.2020.108393

63. Donnelly C.A., Chani A.C., Leung G.M., et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003; 361: 1761–6.

64. Leung G.M., Hedley A.J., Ho L.M., et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann. Intern. Med. 2004; 141: 662–73.

65. Booth C.M., Matukas L.M., Tomlinson G.A., et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003; 289: 2801–9.

66. Zou Z., Yang Y., Chen J., et al. Prognostic factors for severe acute respiratory syndrome: a clinical analysis of 165 cases. Clin. Infect. Dis. 2004; 38: 483–9.

67. Chan J.W., Ng C.K., Chan Y.H., et al. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. 2003; 58: 686–9.

68. Peiris J.S., Chu C.M., Cheng V.C., et al. Clinical progression and viral load in a community outbreak of coronavirus associated SARS pneumonia: a prospective study. Lancet. 2003; 361: 1767–72.

69. Conti Р., Younes А. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J. Biol. Regul. Homeost. Agents. 2020; 34 (2). DOI: 10.23812/Editorial-Conti-3.

70. Keicho N., Itoyama S., Kashiwase K., et al. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum. Immunol. 2009; 70: 527–531.

71. Hill AV. The immunogenetics of human in factious diseases. Annu. Rev. Immunol. 1998; 16: 593–617.

72. Martin M.P., Carrington M. Immunogenetics of viral infections. Curr. Opin. Immunol. 2005; 17: 510–6.

73. Lin M., Tseng H.K., Trejaut J.A., Lee H.L., Loo J.H., Chu C.C., et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003; 4: 9.

74. Chen Y.M., Liang S.Y., Shih Y.P., Chen C.Y., Lee Y.M., Chang L., et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J. Clin. Microbiol. 2006; 44: 359–65.

75. Ng M.H., Lau K.M., Li L., et al. Association of human leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J. Infect. Dis. 2004; 190: 515–8.

76. Xiong P., Zeng X., Song M.S., et al. Lack of association betweenHLA-A,-Band-DRB1 alleles and the development of SARS: A cohort of 95 SARS-recovered individuals in a population of Guangdong, southern China. Int. J. Immunogenet. 2008; 35: 69–74.

77. Wang S.F., Chen K.H., Chen M., et al. Human-leukocyte antigen class I Cw 1502 and class II DR 0301 genotypes are associated with resistance to severe acute respiratory syndrome (SARS) infection. Viral Immunol. 2011; 24 (5): 421–6. DOI: 10.1089/vim.2011.0024.

78. Li C.K., Wu H., Yan H., et al. T cell responses to whole SARS coronavirus in humans. J. Immunol. 2008; 181: 5490–500.

79. Libraty D.H., O’Neil K.M., Baker L.M., et al. Human CD4(+) memory T-lymphocyte responses to SARS coronavirus infection. Virology. 2007; 368: 317–21.

80. Yang J., James E., Roti M., et al. Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals. Int. Immunol. 2009; 21 (1): 63–71. DOI: 10.1093/intimm/dxn124.

81. Baruah V., Bose S. Immunoinformatics - aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. J. Med. Virol. 2020; 92: 495–500.

82. Hyun-Jung, Lee C, Koohy H. In silico identification of vaccine targets for 2019-nCoV [version 1; peer review: 2 approved]. F1000Research. 2020; 9: 145. URL: https://doi.org/10.12688/f1000research.22507.1

83. Ramaiah A., Arumugaswami V. Insights into cross-species evolution of novel human coronavirus 2019-nCoV and defining immune determinants for vaccine development. BioRxiv. 2020. URL: https://doi.org/10.1101/2020.01.29.925867

84. Lau Y.L., Peiris J.S. Pathogenesis of severe acute respiratory syndrome. Curr. Opin. Immunol. 2005; 17: 404–10.

85. Chen J., Subbarao K. The immunobiology of SARS. Annu. Rev. Immunol. 2007; 25: 443–72.

86. Chan V.S., Chan K.Y., Chen Y., et al. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat. Genet. 2006; 38: 38–46.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»