Glucosaminylmuramyl dipeptide acid (GMDP-A) modulates intracellular signaling pathways in natural killer cells

Abstract

Introduction. Medicines developed as derivatives of muramyl peptides have been the subject of experimental and clinical studies for several decades. The intracellular NOD2- receptor responsible for the binding of muramyl dipeptide and its derivatives remains an attractive molecular target for the development of new drugs with a known mechanism of action. GMDP-A belongs to one of the NOD2-receptor ligands. In this study signaling mechanisms initiated by GMDP-A were characterized for the first time in natural killer (NK) cells.

Material and methods. NK cells isolated by magnetic separation from peripheral blood of healthy donors were incubated with 10 pg/ml GMDP-A for 6 hours and 16 hours. The levels of genes expression were determined using the Illumina HumanHT-12v4 Expression BeadChip kit and Illumina iScan instrument (Illumina, USA). The data were statistically processed using an application software package (v 2011.1, Illumina).

Results. It was found that GMDP-A enhanced the transcription of a number of genes associated with transduction of signals from receptors, thereby ensuring the maintenance of the functional activity of NK cells. GMDP-A induced the synthesis of transcripts of the MAPK signaling pathway, VAV2 signal mediators, the CRKL signal adapter, enhanced the synthesis of transcripts of the regulatory subunit 3 (γ) phosphoinositide-3-kinase and phospholipase C B1 genes that control phospholipid metabolism, activated the cells with defects in the cellular immunity link. GMDP-A significantly increases the expression level of the following key genes associated with the control of the mechanisms of direct and antibody-mediated cytotoxic activity of NK cells: CRKL, VAV2, ZAP70, RAP1A, PLCB1, FCGR3A, the MAPK family, IFNA1, TNFRSF9, TNFSF14.

Conclusion. Experimental data justify the high potential of the GMDP-A to counteract altered recognition of the early stages of oncogenic and viral transformation by key cells of the innate immunity, the NK cells.

Keywords:natural killer cells; glucosaminyl muramyl dipeptide acid; transcriptome; MAPK signaling pathway; interferon; anti-infection immunity; anti-tumor immunity

For citation: Guryanova S.V., Gaponov A.M., Pisarev V.M., Yakushenko E.V., Tutelyan A.V., Aleksandrov I.A., Tsipandina E.V, Kozlov I.G. Glucosaminylmuramyl dipeptide acid (GMDP-A) modulates the intracellular signaling pathways of natural killer cells. Immunologiya. 2020; 41 (3): 235-48. DOI: 10.33029/0206-4952-2020-41-3-235-248 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Guryanova S.V., Khaitov R.M. Glucosaminylmuramyldipeptide – GMDP: mucosal immunotherapy and immunoprophylaxis. Immunologiya. 2020; 41 (2): 174–83. (in Russian)

2. Abramashvili Yu.G., Kolesnikova N.V., Borisova O.Yu., Guryanova S.V. Low molecular weight bioregulator of bacterial origin in condylomatosis therapy optimization. RUDN Journal of Medicine. 2020; 24 (2): 163–7. DOI: 10.22363/2313-0245-2020-24-2-163-167.

3. Guryanova S.V., Borisova O.Yu., Kolesnikova N.V., Lezhava N.L., Kozlov I.G., Gudima G.O. Effect of muramyl peptide on the microbial landscape of the oral cavity. Immunologiya. 2019; 40 (6): 34–40. DOI: 10.24411/ 0206-4952-2019-16005. (in Russian)

4. Meshcheryakova E.A., Guryanova S.V., Makarov E.A., Andronova T.M., Ivanov V.T. Structure-function investigation of glucosamuramylpeptides. Influence of chemical modification of N-acetylglucosaminyl-N-acetylmuramyl dipeptide (GMDP) on its immunomodulatory properties in vivo and in vitro. Bioorganicheskaya khimiya. 1991; 17 (9): 1157–65.

5. Moretta A., Bottino C., Vitale M., Pende D., et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. 2001; 19: 197–223.

6. Pesce S., Greppi M., Grossi F., Del Zotto G., et al. PD/1-PD-Ls checkpoint: insight on the potential role of NK cells. Front. Immunol. 2019; 10: 1242.

7. Vitale M., Della Chiesa M., Carlomagno S., Romagnani C., et al. The small subset of CD56brightCD16-natural killer cells is selectively responsible for both cell proliferation and interferon-gamma production upon interaction with dendritic cells. Eur. J. Immunol. 2004; 34 (6): 1715–22.

8. Dotiwala F., Lieberman J. Granulysin: killer lymphocyte safeguard against microbes. Curr. Opin. Immunol. 2019; 60: 19–29.

9. Zheng P., Hanson C., Liu D. Adaptor protein Crk-like (CrkL) controls natural killer cell function via regulating the accumulation of activating receptors and phosphorylated Vav-1 molecules at immunological synapses (INM2P.433). J. Immunol. 2014; 192 (1 Suppl): 56.16.

10. Pugh J.L., Nemat-Gorgani N., Norman P.J., Guethlein L.A., et al. Human natural killer cells downregulate Zap70 and syk in response to prolonged activation or DNA damage. J. Immunol. 2018; 200 (3): 1146–58. DOI: 10.4049/jimmunol.1700542.

11. Kotelevets L., Chastre E. Rac1 signaling: from intestinal homeostasis to colorectal cancer metastasis. Cancers (Basel). 2020; 12 (3). pii: E665. DOI: 10.3390/cancers12030665.

12. Minato N. Rap G protein signal in normal and disordered lymphohematopoiesis. Exp. Cell. Res. 2013; 319 (15): 2323–8. DOI: 10.1016/j.yexcr.2013.04.009.

13. Pearce A.C., Senis Y.A., Billadeau D.D., Turner M., et al. Vav1 and vav3 have critical but redundant roles in mediating platelet activation by collagen. J. Biol. Chem. 2004; 279 (52): 53 955–62.

14. Kerr W.G., Colucci F. Inositol phospholipid signaling and the biology of natural killer cells. J. Innate Immun. 2011; 3: 249–57.

15. Gulluni F., De Santis M.C., Margaria J.P., Martini M., et al. Class II PI3K functions in cell biology and disease. Trends Cell Biol. 2019; 29 (4): 339–59. DOI: 10.1016/j.tcb.2019.01.001.

16. Moon W.Y., Powis S.J. Does natural killer cell deficiency (NKD) increase the risk of cancer? NKD may increase the risk of some virus induced cancer. Front. Immunol. 2019; 10: 1703. DOI: 10.3389/fimmu.2019.01703.

17. Lee Y.H., Choi S.J., Ji J.D., Song G.G. Associations between functional FCGR2A R131H and FCGR3A F158V polymorphisms and responsiveness to TNF blockers in spondyloarthropathy, psoriasis and Crohn’s disease: a meta-analysis. Pharmacogenomics. 2016; 13: 1465–77. DOI: 10.2217/pgs.16.27.

18. Osterlund P.I., Pietilä T.E., Veckman V., Kotenko S.V., et al. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-lambda) genes. J. Immunol. 2007; 179 (6): 3434–42. DOI: 10.4049/jimmunol.179.6.3434.

19. Rogovskii V.S. The linkage between inflammation and immune tolerance: interfering with inflammation in cancer. Curr. Cancer Drug Targets. 2017; 17 (4): 325–32. DOI: 10.2174/1568009617666170109110816.

20. Orton R.J., Sturm O.E., Vyshemirsky V., Calder M., et al. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. 2005; 392 (2): 249–61. DOI: 10.1042/BJ20050908.

21. Wallach D. The TNF cytokine family: one track in a road paved by many. Cytokine. 2013; 63 (3): 225–9. DOI: 10.1016/j.cyto.2013.05.027.

22. Jewett A., Kos J., Fong Y., Ko M.W., et al. NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin. Cancer Biol. 2018; 53: 178–88. DOI: 10.1016/j.semcancer.2018.08.001.

23. Rostovtseva L.I., Andronova T.M., Malkova V.P., Sorokina I.B., Ivanov V.T. Synthesis and antitumor activity of glycopeptides containing N-acetylglucosaminyl-(1→4)-N-acetylmuramyl disaccharide unit. Bioorganicheskaya khimiya. 1981; 7: 1843–58.

24. Kursakov S.V., Kuznetsova E.G., Kuryleva O.M., Salomatina L.A., Guryanova S.V., Borisova O.Yu., Gudima G.O., Sevastyanov V.I. Development and validation of a method for glucosaminyl muramyl dipeptide determining in aqueous solutions by high performance liquid chromatography. Immunologiya. 2020; 41 (1): 74–82. DOI: 10.33029/0206-4952-2020-41-1-74-82. (in Russian)

25. Liu D. The adaptor protein Crk in immune response. Immunol. Cell Biol. 2014; 92: 80–9.

26. Liu D., Peterson M.E., Long E.O. The adaptor protein Crk controls activation and inhibition of natural killer cells. Immunity. 2012; 36: 600–11.

27. Gaponov A.M., Yakushenko E.V., Tutelyan A.V., Pisarev V.M., et al. Muramyl dipeptide derivative (GMDP-A) stimulates NK-cell cytoticity, expression of perforin and receptor IL-18. Immunologiya. 2019; 40 (5): 44–51. DOI: 10.24411/0206-4952-2019-15005. (in Russian)

28. Connell N.T., Berliner N. Fostamatinib for the treatment of chronic immune thrombocytopenia. Blood. 2019; 133 (19): 2027–30. DOI: 10.1182/blood-2018-11-852491.

29. Colucci F., Schweighoffer E., Tomasello E., Turner M., et al. Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nat. Immunol. 2002; 3: 288–94.

30. Meshcheryakova E., Guryanova S., Makarov E., Alekseeva L., et al. Prevention of experimental septic shock by pretreatment of mice with muramyl peptides. Int. Immunopharmacol. 2001; 1 (9–10): 1857–65.

31. Kolesnikova N.V., Kozlov I.G., Guryanova S.V., Kokov E.A., Andronova T.M. Clinical and immunological efficiency of muramyl dipeptide in the treatment of atopic diseases. Meditsinskaya immunologiya. 2016; 18 (1): 15–20. DOI: 10.15789/1563-0625-2016-1-15-20 (in Russian)

32. Guryanova S., Udzhukhu V., Kubylinsky A. Pathogenetic therapy of psoriasis by muramyl peptide. Front. Immunol. 2019; 10: 1275. DOI: 10.3389/fimmu.2019.01275.

33. Manapova E.R., Fazylov V.Ch., Guryanova S.V. Cytopenias and their correction during antiviral therapy of chronic hepatitis C in patients with genotype 1. Voprosy virusologii. 2017; 62 (4): 174–8. (in Russian)

34. Segovis C.M., Schoon R.A., Dick C.J., Nacusi L.P., Leibson P.J., Billadeau D.D. PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. J. Immunol. 2009; 182 (11): 6933–42. DOI: 10.4049/jimmunol.0803840.

35. Cocco L., Gilmour R.S., Ognibene A., Manzoli F.A., Irvine R.F. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for phosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 1987; 248: 765–70.

36. Ponti C., Falconi M., Billi A.M., Faenza I., et al. IL-12 and IL-15 induce activation of nuclear PLCbeta in human natural killer cells. Int. J. Oncol. 2002; 20 (1): 149–53.

37. Matalon O., Fried S., Ben-Shmuel A., Pauker M.H., Joseph N., Keizer D., et al. Dephosphorylation of the adaptor LAT and phospholipase C–g by SHP-1 inhibits natural killer cell cytotoxicity. Sci. Signal. 2016; 9: ra54.

38. Comet N.R., Aguiló J.I., Rathoré M.G., Catalán E., et al. IFNαsignaling through PKC-θ is essential for antitumor NK cell function. Oncoimmunology. 2014; 3 (8): e948705. DOI: 10.4161/21624011.2014.948705.

39. Takehara T., Uemura A., Tatsumi T., Suzuki T., Kimura R., Shiotani A., Ohkawa K., Kanto T., Hiramatsu N., Hayashi N. Natural killer cell-mediated ablation of metastatic liver tumors by hydrodynamic injection of IFNalpha gene to mice. Int. J. Cancer. 2007; 120 (6): 1252–60. DOI: 10.1002/ijc.22152.

40. Li C., Ge B., Nicotra M., Stern J.N.H., et al. JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity. Proc. Natl Acad. Sci. USA. 2008; 105 (8): 3017–22. DOI: 10.1073/pnas.0712310105.

41. Parkes M.D., Halloran P.F., Hidalgo L.G. Evidence for CD16a-mediated NK cell stimulation in antibody-mediated kidney transplant rejection. Transplantation. 2017; 101 (4): e102–11. DOI: 10.1097/TP.0000000000001586.

42. Gaponov A.M., Yakushenko E.V., Tutelyan A.V., Kozlov I.G. Influence of muramyl dipeptide derivative (GMDP-A) on NOD-2 expressed tumor cell lines. Rossiyskiy immsunologicheskiy zhurnal. 2018; 12 (21): 128–40. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»