Metabolic reprogramming of macrophages upon activation with a NOD1 receptor agonist

Abstract

Activation of immune system cells is accompanied by a profound rearrangement of their metabolism, or metabolic reprogramming. Muramyl peptides, which are fragments of bacterial peptidoglycan, activatie innate immune cells through NOD1 and/or NOD2 receptors. Here, we characterize, for the first time, alterations of carbohydrate and energy metabolism of human macrophages activated by a NOD1 agonist, N-acetyl-D-muramyl-L-alanyl-D-isoglutamyl-meso-diaminopimelic acid (M-triDAP) in comparison with a TLR4 agonist, lipopolysaccharide (LPS). Real-time analysis of cell metabolism showed that both agonists, within 1 h after addition to cells, boosted glycolysis along with a minor reduction of oxygen consumption.

The effect of either agonist on glycolysis was blocked by an Akt kinase inhibitor, but was independent of the mTORC1 kinase complex and elevation of glycolytic enzyme expression. Unlike LPS, M-triDAP caused almost no induction of aconitate decarboxylase 1, an enzyme breaking the Krebs’ cycle. The effect of 2-deoxyglucose (a competitive inhibitor of glycolysis) and Akt inhibitor on M-triDAP-induced cytokine expression was ambiguous. The Akt inhibitor reduced TNF, IL-6 and IL-1β, expression, whereas 2-DG inhibited TNF and IL-6 expression at an early stage (1 h), but enhanced it at a late stage (4-9 h) after addition of M-triDAP. Mechanisms whereby these inhibitors affect cytokine expression are discussed.

Keywords:imacrophages; metabolic reprogramming; glycolysis; muramyl peptides; NOD1

Received 19.11.2018. Accepted 16.01.2019.

For citation: Murugina N.E., Balyasova L.S., Budikhina A.S., Maximchik P.V., Dagil Yu.A., Murugin V.V., Chkadua G.Z., Pinegin B.V., Pashenkov M.V. Metabolic reprogramming of macrophages upon activation with a nod1 receptor agonist. Immunologiya. 2019; 40 (1): 5-14. doi: 10.24411/0206-4952-2019-11001. (in Russian)

Acknowledgments. The work is executed at financial support of Russian Science Foundation grant No. 16-15-10314. Conflict of interest. The authors declare no conflict of interest.

References

1. O’Neill L.A., Pearce E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 2015; 213 (1): 15-23.

2. Buck M.D., O’Sullivan D., Pearce E.L. T cell metabolism drives immunity. J. Exp. Med. 2015; 212 (9): 1345-60.

3. Jha A.K., Huang S.C., Sergushichev A., Lampropoulou V. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015; 42 (3): 419-30.

4. Mills E.L., Kelly B., Logan A., Costa A.S.H. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016; 167 (2): 457-70.e13.

5. Huang S.C., Everts B., Ivanova Y., O’Sullivan D. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 2014; 15 (9): 846-55.

6. Van den Bossche J., O’Neill L.A., Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017; 38 (6): 395-406.

7. Stienstra R., Netea-Maier R.T., Riksen N.P., Joosten L.A.B. et al. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab. 2017; 26 (1): 142-56.

8. Ip W.K.E., Hoshi N., Shouval D.S., Snapper S. et al. Antiinflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017; 356 (6337): 513-9.

9. Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324 (5930): 1029-33.

10. Diskin C., Palsson-McDermott E.M. Metabolic modulation in macrophage effector function. Front Immunol. 2018; 9: 270.

11. Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013; 496 (7444): 238-42.

12. Everts B., Amiel E., Huang S.C., Smith A.M. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat. Immunol. 2014; 15 (4): 323-32.

13. Cheng S.C., Quintin J., Cramer R.A., Shepardson K.M. et al. mTOR- and HIF-1 alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014; 345 (6204): 1250684.

14. Krawczyk C.M., Holowka T., Sun J., Blagih J. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010; 115 (23): 4742-9.

15. Meiser J., Kramer L., Sapcariu S.C., Battello N. et al. Proinflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem. 2016; 291 (8): 3932-46.

16. Lampropoulou V., Sergushichev A., Bambouskova M., Nair S. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016; 24 (1): 158-66.

17. Girardin S.E., Boneca I.G., Carneiro L.A., Antignac A. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003; 300 (5625): 1584-7.

18. Chamaillard M., Hashimoto M., Horie Y., Masumoto J. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol. 2003; 4 (7): 702-7.

19. Dagil Y.A., Arbatsky N.P., Alkhazova B.I., L’Vov V L. et al. The dual NOD1/NOD2 agonism of muropeptides containing a meso-diaminopimelic acid residue. PLoS One. 2016; 11 (8): e0160784.

20. Дагиль Ю.А., Арбатский Н.П., Алхазова Б.И., ЛьвовВ. Л. и др. Структурные особенности селективных и неселективных агонистов NOD-рецепторов. Мед. иммунология. 2017; (19): 705-14. [Dagil Yu.A., Arbatsky, N.P., Alkhazova, B.I., L’vov, V.L. et al. Structural features of selective and non-selective NOD receptor agonists. Meditsinskaya immunologiya [Medical Immunology]. 2017; (19): 705-14. (in Russian)]

21. Pashenkov M.V., Popilyuk S.F., Alkhazova B.I., L’Vov V.L. et al. Muropeptides trigger distinct activation profiles in macrophages and dendritic cells. Int Immunopharmacol. 2010; 10 (8): 875-82.

22. Pashenkov M.V., Balyasova L.S., Dagil Y.A., Pinegin B.V. The role of the p38-MNK-eIF4E signaling axis in TNF production downstream of the NOD1 receptor. J. Immunol. 2017; 198 (4): 1638-48.

23. Rogatzki M.J., Ferguson B.S., Goodwin M.L., Gladden L.B. Lactate is always the end product of glycolysis. Front Neurosci. 2014; 9: 22.

24. Hahn E.L., Halestrap A.P., Gamelli R.L. Expression of the lactate transporter MCT1 in macrophages. Shock. 2000; 13 (4): 253-60.

25. John S., Weiss J.N., Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One. 2011; 6 (3): e17674.

26. Miyamoto S., Murphy A.N., Brown J.H. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2008; 15 (3): 521-9.

27. Bain J., Plater L., Elliott M., Shpiro N. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 2007; 408 (3): 297-315.

28. Jiang H., Shi H., Sun M., Wang Y. et al. PFKFB3-driven macrophage glycolytic metabolism is a crucial component of innate antiviral defense. J. Immunol. 2016; 197 (7): 2880-90.

29. Boyd S., Brookfield J.L., Critchlow S.E., Cumming I.A. et al. Structure-based design of potent and selective inhibitors of the metabolic kinase PFKFB3. J. Med. Chem. 2015; 58 (8): 3611-25.

30. Clem B.F., O’Neal J., Tapolsky G., Clem A.L. et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol. Cancer Ther. 2013; 12 (8): 1461-70.

31. Michelucci A., Cordes T., Ghelfi J., Pailot A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci.USA. 2013; 110 (19): 7820-5.

32. Cordes T., Wallace M., Michelucci A., Divakaruni A.S. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 2016; 291 (27): 14 274-84.

33. Mills E.L., Ryan D.G., Prag H.A., Dikovskaya D. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018; 556 (7699): 113-7.

34. Vergadi E., Ieronymaki E., Lyroni K., Vaporidi K. et al. Akt Signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 2017; 198 (3): 1006-14.

35. Dietl K., Renner K., Dettmer K., Timischl B. et al. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol. 2010; 184 (3): 1200-9.

36. Hu K., Yang Y., Lin L., Ai Q. et al. Caloric restriction mimetic 2-Deoxyglucose alleviated inflammatory lung injury via suppressing nuclear pyruvate kinase M2-signal transducer and activator of transcription 3 pathway. Front Immunol. 2018; 9: 426.

37. Na Y.R., Gu G.J., Jung D., Kim Y.W. et al. GM-CSF induces inflammatory macrophages by regulating glycolysis and lipid metabolism. J. Immunol. 2016; 197 (10): 4101-9.

38. Miller E.S., Koebel D.A., Sonnenfeld G. The metabolic stressor 2-deoxy-D-glucose (2-DG) enhances LPS-stimulated cytokine production in mice. Brain Behav Immun. 1993; 7 (4): 317-25.

39. Wang A., Huen S.C., Luan H.H., Yu S. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell. 2016; 166 (6): 1512-25.e12.

40. Millet P., Vachharajani V, McPhail L., Yoza B. et al. GAPDH binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism. J. Immunol. 2016; 196 (6): 2541-51.

41. Shutt D.C., O’Dorisio M.S., Aykin-Burns N., Spitz D.R. 2-deoxy-D-glucose induces oxidative stress and cell killing in human neuroblastoma cells. Cancer Biol. Ther. 2010; 9 (11): 853-61.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»