Application of chitosan and its derivatives in immunotherapy of malignant neoplasms

Abstract

The article provides an overview of the effect of chitosan and its derivatives chitooligomers on the components of the immune system. The main attention is paid to the use of chitosan in immunotherapy of malignant neoplasms. The physicochemical properties of chitosan make it promising for the development of immunotropic drugs, adjuvants for vaccines, and a pharmaceutical basis for the creation of delivery vehicles for medicinal or immunoactive substances. Targeted platforms based on chitosan are of great interest for practical medicine. The successful application of the indicated approaches in the treatment of oncopathology will lead to an increase in the therapeutic efficiency of existing treatment methods and a potential increase in the quality of life of patients.

Keywords:chitosan; immunotherapy; oncology; targeted therapy; oncovaccines

For citation: Gorshenin D.S., Zhernov Yu.V., Krivtsov G.G., Khaitov M.R. Application of chitosan and its derivatives in immunotherapy of malignant neoplasms. Immunologiya. 2020; 41 (5): 470-8. DOI: https://doi.org/10.33029/0206-4952-2020-41-5-470-478 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Dobosz P., Dzieciątkowski T. The intriguing history of cancer immunotherapy. Front. Immunol. 2019; 10: 2965.

2. Kashutina M.I., Zhernov Yu.V., Zubkova O.A., Poroshina A.S., Kudlay D.A., Grigoryevsky V.A., Khaitov M.R. Effectiveness of rituximab biosimilar (Reddytux®) on the treatment of diffuse large B-cell lymphoma. Immunologiya. 2019; 40 (6): 16–21. (in Russian)

3. Babu A., Ramesh R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar. Drugs. 2017; 15 (4): 96.

4. Vznuzdaeva O.A., Zverev G.A., Molodtsov I.V. Effect of chitosan on IgM and IgG antibody-producing cells in mice. Immunologiya. 1984; 1: 53–5. (in Russian)

5. Buschmann M.D., Merzouki A., Lavertu M., Thibault M., Jean M., Darras V. Chitosans for delivery of nucleic acids. Adv. Drug Del. Rev. 2013; 65 (9): 1234–70.

6. Liaqat F., Eltem R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr. Polym. 2018; 184: 243–59.

7. Younes I., Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs. 2015; 13 (3): 1133–74.

8. Singh B., Maharjan S., Sindurakar P., Cho K.H., Choi Y.J., Cho C.S. Needle-free immunization with chitosan-based systems. Int. J. Mol. Sci. 2018; 19 (11): 3639.

9. Cardoso A.P., Gonçalves R.M., Antunes J.C., et al. An interferon-γ-delivery system based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion in vitro. Acta Biomater. 2015; 23: 157–71.

10. Sun B., Yu S., Zhao D., Guo S., Wang X., Zhao K. Polysaccharides as vaccine adjuvants. Vaccine. 2018; 36 (35): 5226–34.

11. Vasiliev Y.M. Chitosan-based vaccine adjuvants: incomplete characterization complicates preclinical and clinical evaluation. Expert Rev. Vaccines. 2015; 14 (1): 37–53.

12. Fong D., Hoemann C.D. Chitosan immunomodulatory properties: perspectives on the impact of structural properties and dosage. Future Sci. OA. 2017; 4 (1): FSO225.

13. Vasconcelos D.P., de Torre-Minguela C., Gomez A.I., et al. 3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages. Acta Biomater. 2019; 91: 123–34.

14. Fong D., Gregoire-Gelinas P., Cheng A.P., et al. Lysosomal rupture induced by structurally distinct chitosans either promotes a type 1 IFN response or activates the inflammasome in macrophages. Biomaterials. 2017; 129: 127–38.

15. Jeong H.J., Koo H.N., Oh E.Y., et al. Nitric oxide production by high molecular weight water-soluble chitosan via nuclear factor-kappaB activation. Int. J. Immunopharmacol. 2000; 22 (11): 923–33.

16. Ji Q., Deng J., Yu X., Xu Q., Wu H., Pan J. Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan. Carbohydr. Polym. 2013; 92 (1): 824–9.

17. Okamoto Y., Yano R., Miyatake K., Tomohiro I., Shigemasa Y., Minami S. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym. 2003; 53 (3): 337–42.

18. Zhang P., Liu W., Peng Y., Han B., Yang Y. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages. Int. Immunopharmacol. 2004; 23 (1): 254–61.

19. Mei Y.-X., Chen H.-X., Zhang J., Zhang X.-D., Liang Y.-X. Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. Int. J. Biol. Macromol. 2013; 62: 330–5.

20. Wu N., Wen Z.-S., Xiang X.-W., Huang Y.-N., Gao Y., Qu Y.-L. Immunostimulative activity of low molecular weight chitosans in RAW264.7 macrophages. Marine Drugs. 2015; 13 (10): 6210–25.

21. Azuma K., Osaki T., Minami S., Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 2015; 6 (1): 33–49.

22. Huang R., Mendis E., Rajapakse N., Kim S.-K. Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci. 2006; 78 (20): 2399–408.

23. Xu W., Jiang, C., Kong X., Liang Y., Rong M., Liu W. Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Mol. Med. Rep. 2012; 6 (2): 385–90.

24. Zou P., Yang X., Zhang Y., Du P., Yuan S., Yang D., Wang J. Antitumor effects of orally and intraperitoneally administered chitosan oligosaccharides (COSs) on S180-bearing/residual mouse. J. Food Sci. 2016; 81: H3035–42.

25. Srinivasan H., Kanayairam V., Ravichandran R. Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int. J. Biol. Macromol. 2018; 107 (Pt A): 662–7.

26. Ryan E.J., Daly L.M., Mills K.H.G. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol. 2001; 19: 293–304.

27. Zaharoff D.A., Rogers C.J., Hance K.W., Schlom J., Greiner J.W. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine. 2007; 25: 2085–94.

28. Illum L., Jabbal-Gill I., Hinchcliffe M., Fisher A.N., Davis S.S. Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev. 2001; 51: 81–96.

29. Des Rieux A., Fievez V., Garinot M., Schneider Y.J., Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 2006; 116: 1–27.

30. Higgins L.M., Lambkin I., Donnelly G., Byrne D., Wilson C., Dee J., Smith M., O’Mahony D.J. In vivo phage display to identify m cell-targeting ligands. Pharm. Res. 2004; 21: 695–705.

31. Fievez V., Plapied L., Plaideau C., Legendre D., des Rieux A., Pourcelle V., Freichels H., Jerome C., Marchand J., Preat V., et al. In vitro identification of targeting ligands of human m cells by phage display. Int. J. Pharm. 2010; 394: 35–42.

32. Jung S.N., Kang S.K., Yeo G.H., Li H.Y., Jiang T., Nah J.W., Bok J.D., Cho C.S., Choi Y.J. Targeted delivery of vaccine to dendritic cells by chitosan nanoparticles conjugated with a targeting peptide ligand selected by phage display technique. Macromol. Biosci. 2015; 15: 395–404.

33. Pawar D., Jaganathan K.S. Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: enhancement of mucosal and systemic immune response. Drug Deliv. 2016; 23: 185–94.

34. Phanse Y., Carrillo-Conde B.R., Ramer-Tait A.E., Roychoudhury R., Pohl N.L., Narasimhan B., Wannemuehler M.J., Bellaire B.H. Functionalization of polyanhydride microparticles with di-mannose influences uptake by and intracellular fate within dendritic cells. Acta Biomater. 2013; 9: 8902–9.

35. Zaharoff D.A., Rogers C.J., Hance K.W., Schlom J. Greiner J.W. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine. 2007; 25: 2085–94.

36. Bueter C.L., Lee C.K., Rathinam V.A., Healy G.J., Taron C.H., Specht C.A. Levitz S.M. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J. Biol. Chem. 2011; 286: 35 447–55.

37. Carroll E.C., Jin L., Mori A., Muñoz-Wolf N., Oleszycka E., Moran H.B.T., Mansouri S., McEntee C.P., Lambe E., Agger E.M., et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity. 2016; 44: 597–608.

38. Heffernan M.J., Zaharoff D.A., Fallon J.K., Schlom J., Greiner J.W. In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials. 2011; 32: 926–32.

39. Singh B., Maharjan S., Sindurakar P., Cho K.H., Choi Y.J., Cho C.S. Needle-free immunization with chitosan-based systems. Int. J. Mol. Sci. 2018; 19 (11): 3639.

40. Chiu Y.-H., Chen M.-C., Wan S.-W. Sodium hyaluronate/chitosan composite microneedles as a single-dose intradermal immunization system. Biomacromolecules. 2018; 19: 2278–85.

41. Conlon K.C., Miljkovic M.D., Waldmann T.A. Cytokines in the treatment of cancer. J. Interferon Cytokine Res. 2019; 39 (1): 6–21.

42. Cardoso A.P., Gonçalves R.M., Antunes J.C., et al. An interferon-γ-delivery system based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion in vitro. Acta Biomater. 2015; 23: 157–71.

43. Kadagidze Z.G., Chertkova A.I. The immune system and cancer. Prakticheskaya onkologiya. 2016; 17 (2): 62–73. (in Russian)

44. Ostrand-Rosenberg S., Fenselau C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J. Immunol. 2018; 200 (2): 422–31.

45. Zaharoff D.A., Hance K.W., Rogers C.J., Schlom J., Greiner J.W. Intratumoral immunotherapy of established solid tumors with chitosan/IL-12. J. Immunother. 2010; 33 (7): 697–705.

46. Soofiyani S.R., Hallaj-Nezhadi S., Lotfipour F., Hosseini A.M., Baradaran B. Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma. Iran. J. Basic Med. Sci. 2016; 19 (11): 1238–44.

47. Xu S., Olenyuk B.Z., Okamoto C.T., Hamm-Alvarez S.F.. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 2013; 65 (1): 121–38.

48. Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986; 46 (12): 6387–92.

49. Park J., Choi Y., Chang H., Um W., Ryu J.H., Kwon I.C. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 2019; 9 (26): 8073–90.

50. Saw P.E., Song E.W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 2019; 10 (11): 787–807.

51. Jiang H.L., Kang M.L., Quan J.S., Kang S.G., Akaike T., Yoo H.S., Cho C.S. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization. Biomaterials. 2008; 29: 1931–9.

52. Rao W., Wang H., Han J., et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 2015; 9 (6): 5725–40.

53. Zubareva A.A., Boyko A.A., Holodenko I.V., Rozov F.N., et al. Chitosan nanoparticles targeting tumor-associated ganglioside gd2. Bioorganicheskaya khimiya. 2016; 42 (5): 588–602. (in Russian)

54. Arca H.Ç., Günbeyaz M., Senel S. Chitosan-based systems for the delivery of vaccine antigens. Expert Rev. Vaccines. 2009; 8: 937–53.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»