Mucosal epithelial cells and novel approaches to immunoprophylaxy and immunotherapy of infectious diseases

Abstract

Innate immune defense mechanisms activated by pathogen recognition can be roughly divided into two categories: 1) those aimed at direct killing of the pathogen (microbicidal); 2) those aimed at the development of inflammation (pro-inflammatory). The final goal of both types of mechanisms is elimination of the pathogen and restoration of homeostasis. However, inflammation is accompanied by damage of self tissues, which often has a negative impact on the outcome of infection. Therefore, there is a need in such approaches to immunoprophylaxy and immunotherapy of infections that would enhance antimicrobial defense while minimizing inflammation. A key approach is elevation of epithelial barrier resistance. The proposed concept of immunostimulation is exemplified using COVID-19 infection.

Keywords:epithelial cells; macrophages; antimicrobial peptides; cytokines; chemokines; endotoxin tolerance; COVID-19

For citation: Pinegin B.V., Pashenkov M.V, Pinegin V.B., Khaitov R.M. Mucosal epithelial cells and novel approaches to immunoprophylaxy and immunotherapy of infectious diseases. Immunology. 2020; 41 (6): 486-500. DOI: https://doi.org/10.33029/0206-4952-2020-41-6-486-500 (in Russian)

Funding. The work was supported by the Russian Science Foundation grant 16-15-10314.

Conflict of interests. The authors declare no conflict of interests.

References

1. Khaitov R.M., Pinegin B.V., Pashchenkov M.V. Epithelial cells of the respiratory tract as equal participants of innate immunity and potential targets for immunotropic drugs. Immunologiya. 2020; 41 (2): 107–13. (in Russian)

2. Miller L.S., Modlin R.L. Toll-like receptors in the skin. Semin. Immunopathol. 2007; 29 (1): 15–26.

3. Kiatsurayanon C., Ogawa H., Niyonsaba F. The role of host defense peptide human β-defensins in the maintenance of skin barriers. Curr. Pharm. Des. 2018; 24 (10): 1092–9.

4. Fulton C., Anderson G.M., Zasloff M., Bull R., Quinn A.G. Expression of natural peptide antibiotics in human skin. Lancet. 1997; 350 (9093): 1750–1.

5. Uchi H., Terao H., Koga T., Furue M. Cytokines and chemokines in the epidermis. J. Dermatol. Sci. 2000; 24 (1): S29–38. DOI: https://doi.org/10.1016/S0923-1811(00)00138-9

6. Sauder D.N. The role of epidermal cytokines in inflammatory skin diseases. J. Invest. Dermatol. 1990. DOI: https://doi.org/10.1111/1523-1747.ep12505705

7. Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016; 44 (3): 450–62.

8. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007; 449 (7164): 819–26.

9. Nish S., Medzhitov R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity. 2011; 34 (5): 629–36.

10. Goossens P.L., Tournier J.N. Crossing of the epithelial barriers by Bacillus anthracis: the known and the unknown. Front. Microbiol. 2015; 9: 1122. DOI: https://doi.org/10.3389/fmicb.2015.01122

11. Ross J.M. The pathogenesis of anthrax following the administration of spores by the respiratory route. J. Pathol. Bacteriol. 1957; 73 (2): 485–94.

12. Lisanby M.W., Swiecki M.K., Dizon B.L.P., Pflughoeft K.J., Koehler T.M., Kearney J.F. Cathelicidin administration protects mice from bacillus anthracis spore challenge. J. Immunol. 2008; 181 (7): 4989–5000.

13. Denney L., Ho L.P. The role of respiratory epithelium in host defence against influenza virus infection. Biomed. J. 2018; 41 (4): 218–33.

14. Bist P., Dikshit N., Koh T.H., Mortellaro A., Tan T.T., Sukumaran B. The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect. Immun. 2014; 82 (3): 1112–22.

15. Kale S.D., Dikshit N., Kumar P., Balamuralidhar V., Khameneh H.J., Bin Abdul Malik N., et al. Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs. Sci. Rep. 2017; 7 (1): 17429. DOI: https://doi.org/10.1038/s41598-017-17653-y

16. Liu P., Jamaluddin M., Li K., Garofalo R.P., Casola A., Brasier A.R. Retinoic acid-inducible gene I mediates early Antiviral Response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J. Virol. 2007; 81 (3): 1401–11.

17. Wang Q., Nagarkar D.R., Bowman E.R., Schneider D., Gosangi B., Lei J., et al. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J. Immunol. 2009; 183 (11): 6989–97.

18. Tengroth L., Millrud C.R., Kvarnhammar A.M., Georén S.K., Latif L., Cardell L.O. Functional effects of Toll-Like Receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasal epithelial cells. PLoS One. 2014; 9 (6): e98239. DOI: https://doi.org/10.1371/journal.pone.0098239

19. Muir A., Soong G., Sokol S., Reddy B., Gomez M.I., Van Heeckeren A., et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 2004; 30 (6): 777–83.

20. Hauber H.P., Tulic M.K., Tsicopoulos A., Wallaert B., Olivenstein R., Daigneault P., et al. Toll-like receptors 4 and 2 expression in the bronchial mucosa of patients with cystic fibrosis. Can. Respir. J. 2005; 12 (1): 13–8.

21. Jia H.P., Kline J.N., Penisten A., Apicella M.A., Gioannini T.L., Weiss J., et al. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004; 287 (2): L428–37. DOI: https://doi.org/10.1152/ajplung.00377.2003

22. Parker D., Prince A. Epithelial uptake of flagella initiates proinflammatory signaling. PLoS One. 2013; 8 (3): e59932. DOI: https://doi.org/10.1371/journal.pone.0059932

23. Hieshima K., Ohtani H., Shibano M., Izawa D., Nakayama T., Kawasaki Y., et al. CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J. Immunol. 2003; 170 (3): 1452–61.

24. Salathe M., Holderby M., Forteza R., Abraham W.M., Wanner A., Conner G.E. Isolation and characterization of a peroxidase from the airway. Am. J. Respir. Cell. Mol. Biol. 1997; 17 (1): 97–105.

25. Gingerich A., Pang L., Hanson J., Dlugolenski D., Streich R., Lafontaine E.R., et al. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus. Inflamm. Res. 2016; 65 (1): 71–80.

26. Shornick L.P., Wells A.G., Zhang Y., Patel A.C., Huang G., Takami K., et al. Airway epithelial versus immune cell Stat1 function for innate defense against respiratory viral infection. J. Immunol. 2008; 180 (5): 3319–28.

27. Mijares L.A., Wangdi T., Sokol C., Homer R., Medzhitov R., Kazmierczak B.I. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an IL-1-dependent pathway. J. Immunol. 2011; 186 (12): 7080–8.

28. Lyons C.R., Lovchik J., Hutt J., Lipscomb M.F., Wang E., Heninger S., et al. Murine model of pulmonary anthrax: Kkinetics of dissemination, histopathology, and mouse strain susceptibility. Infect. Immun. 2004; 72 (8): 4801–9.

29. Petecchia L., Sabatini F., Usai C., Caci E., Varesio L., Rossi G.A. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Lab. Investig. 2012; 92 (8): 1140–8.

30. Hardyman M.A., Wilkinson E., Martin E., Jayasekera N.P., Blume C., Swindle E.J., et al. TNF-α-mediated bronchial barrier disruption and regulation by src-family kinase activation. J. Allergy Clin. Immunol. 2013; 132 (3): 665–75. DOI: https://doi.org/10.1016/j.jaci.2013.03.005

31. Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003; 301 (5633): 640–3.

32. Jiang Z., Mak T.W., Sen G., Li X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc. Natl Acad. Sci. USA. 2004; 101 (10): 3533–8.

33. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005; 6 (10): 981–8.

34. Le Goffic R., Pothlichet J., Vitour D., Fujita T., Meurs E., Chignard M., et al. Cutting edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J. Immunol. 2007; 178 (6): 3368–72.

35. Dauletbaev N., Cammisano M., Herscovitch K., Lands L.C. Stimulation of the RIG-I/MAVS pathway by polyinosinic:polycytidylic acid upregulates IFN-β in airway epithelial cells with minimal costimulation of IL-8. J. Immunol. 2015; 195 (6): 2829–41.

36. Veazey J.M., Chapman T.J., Smyth T.R., Hillman S.E., Eliseeva S.I., Georas S.N. Distinct roles for MDA5 and TLR3 in the acute response to inhaled double-stranded RNA. PLoS One. 2019; 14 (5): e0216056. DOI: https://doi.org/10.1371/journal.pone.0216056

37. Le Goffic R., Balloy V., Lagranderie M., Alexopoulou L., Escriou N., Flavell R., et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2006; 2 (6): 526–35.

38. Carey M.A., Bradbury J.A., Rebolloso Y.D., Graves J.P., Zeldin D.C., Germolec D.R. Pharmacologic inhibition of COX-1 and COX-2 in influenza a viral infection in mice. PLoS One. 2010; 5 (7): e11610. DOI: https://doi.org/10.1371/journal.pone.0011610

39. Carey M.A., Bradbury J.A., Seubert J.M., Langenbach R., Zeldin D.C., Germolec D.R. Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J. Immunol. 2005; 175 (10): 6878–84.

40. Beeson P.B., Roberts E. Tolerance to bacterial pyrogens: I. factors influencing its development. J. Exp. Med. 1947; 86 (1): 29–38.

41. Foster S.L., Hargreaves D.C., Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007; 447 (7147): 972–8.

42. Seeley J.J., Ghosh S. Molecular mechanisms of innate memory and tolerance to LPS. J. Leukoc. Biol. 2017; 101 (1): 107–19.

43. Lehner M.D., Ittner J., Bundschuh D.S., Van Rooijen N., Wendel A., Hartung T. Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica serovar typhimurium infection despite attenuated cytokine response. Infect. Immun. 2001; 69 (1): 463–71.

44. Cavaillon J.M., Adrie C., Fitting C., Adib-Conquy M. Endotoxin tolerance: is there a clinical relevance? J. Endotoxin Res. 2003; 9 (2): 101–7.

45. Pashecnkhov M.V., Popilyuk S.F., Alkhazova B.I., L'vov V.L., Fedenko E.S., Khaitov R.M., et al. Immunobiological properties of muramylpeptide fragments of peptidoglycan from Gram-negative bacteria. Immunologiya. 2010; 31 (3): 119–25. (in Russian)

46. Günther J., Petzl W., Zerbe H., Schuberth H.J., Koczan D., Goetze L., et al. Lipopolysaccharide priming enhances expression of effectors of immune defence while decreasing expression of pro-inflammatory cytokines in mammary epithelia cells from cows. BMC Genomics. 2012; 13: 17. DOI: https://doi.org/10.1186/1471-2164-13-17

47. Koch S.R., Lamb F.S., Hellman J., Sherwood E.R., Stark R.J. Potentiation and tolerance of toll-like receptor priming in human endothelial cells. Transl. Res. 2017; 180: 53–67.e4.

48. Bagchi A., Herrup E.A., Warren H.S., Trigilio J., Shin H.-S., Valentine C., et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J. Immunol. 2007; 178 (2): 1164–71.

49. Li D., Lei H., Li Z., Li H., Wang Y., Lai Y. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One. 2013; 8 (3): e58288. DOI: https://doi.org/10.1371/journal.pone.0058288

50. Sechet E., Telford E., Bonamy C., Sansonetti P.J., Sperandio B. Natural molecules induce and synergize to boost expression of the human antimicrobial peptide β-defensin-3. Proc. Natl Acad. Sci. USA. 2018; 115 (42): E9869–78.

51. Koatz A.M., Coe N.A., Cicerán A., Alter A.J. Clinical and immunological benefits of OM-85 bacterial lysate in patients with allergic rhinitis, asthma, and COPD and recurrent respiratory infections. Lung. 2016; 194 (4): 687–97.

52. Rossi G.A., Peri C., Raynal M.E., Defilippi A.C., Risso F.M., Schenone G., et al. Naturally occurring immune response against bacteria commonly involved in upper respiratory tract infections: analysis of the antigen-specific salivary IgA levels. Immunol. Lett. 2003; 86 (1): 85–91.

53. Ruedl C., Frühwirth M., Wick G., Wolf H. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens. Clin. Diagn. Lab. Immunol. 1994; 1 (2): 150–4.

54. Puigdollers J.M., Serna G.R., Hernandez Del Rey I., Barruffet M.T., Torroella J.J. Immunoglobulin production in man stimulated by an orally administered bacterial lysate. Respiration. 1980; 40 (3): 142–9.

55. Esposito S., Bianchini S., Bosis S., Tagliabue C., Coro I., Argentiero A., et al. A randomized, placebo-controlled, double-blinded, single-centre, phase IV trial to assess the efficacy and safety of OM-85 in children suffering from recurrent respiratory tract infections. J. Transl. Med. 2019; 17 (1): 284. DOI: https://doi.org/10.1186/s12967-019-2040-y

56. Cazzola M., Anapurapu S., Page C.P. Polyvalent mechanical bacterial lysate for the prevention of recurrent respiratory infections: a meta-analysis. Pulm. Pharmacol. Ther. 2012; 25 (1): 62–8.

57. Coates B.M., Staricha K.L., Ravindran N., Koch C.M., Cheng Y., Davis J.M., et al. Inhibition of the NOD-like receptor protein 3 inflammasome is protective in juvenile influenza a virus infection. Front. Immunol. 2017; 8: 782. DOI: https://doi.org/10.3389/fimmu.2017.00782

58. Shi X., Zhou W., Huang H., Zhu H., Zhou P., Zhu H., et al. Inhibition of the inflammatory cytokine tumor necrosis factor-alpha with etanercept provides protection against lethal H1N1 influenza infection in mice. Crit. Care. 2013; 17 (6): R301. DOI: https://doi.org/10.1186/cc13171

59. Vallabhapurapu S., Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 2009; 27: 693–733.

60. Ding Y., Chen L., Wu W., Yang J., Yang Z., Liu S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect. 2017; 19 (12): 605–15.

61. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020; 324 (8): 782–93.

62. Lee J.S., Park S., Jeong H.W., Ahn J.Y., Choi S.J., Lee H., et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 2020; 5 (49): abd1554. DOI: https://doi.org/10.1126/sciimmunol.abd1554

63. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10 223): 497–506.

64. Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., Sundaram M., et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020; 584 (7821): 463–9. DOI: https://doi.org/10.1038/s41586-020-2588-y

65. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–80.e8.

66. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020; 181 (5): 1016–35.e19.

67. Chua R.L., Lukassen S., Trump S., Hennig B.P., Wendisch D., Pott F., et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 2020; 38 (8): 970–9.

68. Sureda A., Alizadeh J., Nabavi S.F., Berindan-Neagoe I., Cismaru C.A., Jeandet P., et al. Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur. J. Pharmacol. 2020; 882: 173288. DOI: https://doi.org/10.1016/j.ejphar.2020.173288

69. Wang C., Wang S., Li D., Wei D.Q., Zhao J., Wang J. Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2. Gastroenterology. 2020; 153 (3). DOI: https://doi.org/10.1053/j.gastro.2020.05.015

70. Zhao H., To K.K.W., Sze K.H., Yung T.T.M., Bian M., Lam H., et al. A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat. Commun. 2020. DOI: https://doi.org/10.1038/s41467-020-17986-9

71. Telcian A.G., Zdrenghea M.T., Edwards M.R., Laza-Stanca V., Mallia P., Johnston S.L., et al. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res. 2017; 137: 93–101.

72. Tripathi S., Wang G., White M., Qi L., Taubenberger J., Hartshorn K.L. Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One. 2015; 10 (4): e0124706. DOI: https://doi.org/10.1371/journal.pone.0124706

73. Currie S.M., Findlay E.G., McHugh B.J., Mackellar A., Man T., Macmillan D., et al. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One. 2013; 8 (8): e0073659. DOI: https://doi.org/10.1371/journal.pone.0073659

74. Bergman P., Walter-Jallow L., Broliden K., Agerberth B., Soderlund J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res. 2007; 5 (4): 410–5.

75. Liu P.T., Stenger S., Li H., Wenzel L., Tan B.H., Krutzik S.R., et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311 (5768): 1770–3.

76. Gubatan J., Mehigan G.A., Villegas F., Mitsuhashi S., Longhi M.S., Malvar G., et al. Cathelicidin mediates a protective role of vitamin D in ulcerative colitis and human colonic epithelial cells. Inflamm. Bowel Dis. 2020; 26 (6): 885–97.

77. Mathyssen C., Serré J., Sacreas A., Everaerts S., Maes K., Verleden S., et al. Vitamin D modulates the response of bronchial epithelial cells exposed to cigarette smoke extract. Nutrients. 2019; 11 (9): 2138. DOI: https://doi.org/10.3390/nu11092138

78. Wang T.-T., Nestel F.P., Bourdeau V., Nagai Y., Wang Q., Liao J., et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004; 173 (5): 2909–12.

79. Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020; 12 (4): 988. DOI: https://doi.org/10.3390/nu12040988

80. Ilie P.C., Stefanescu S., Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020; 32 (7): 1195–8.

81. Siuka D., Pfeifer M., Pinter B. Vitamin D supplementation during the COVID-19 pandemic. Mayo Clin. Proc. 2020; 95 (8): 1804–5.

82. Xu Y., Baylink D.J., Chen C.S., Reeves M.E., Xiao J., Lacy C., et al. The importance of vitamin D metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 2020; 18 (1): 322.

83. Crane-Godreau M.A., Clem K.J., Payne P., Fiering S. Vitamin D deficiency and air pollution exacerbate COVID-19 through suppression of antiviral peptide LL37. Front. Public Health. 2020; 8: 232. DOI: https://doi.org/10.3389/fpubh.2020.00232

84. Leyssens C., Verlinden L., De Hertogh G., Kato S., Gysemans C., Mathieu C., et al. Impact on experimental colitis of Vitamin D receptor deletion in intestinal epithelial or myeloid cells. Endocrinology. 2017; 158 (7): 2354–66.

85. McGregor R., Chauss D., Freiwald T., Yan B., Wang L., Nova-Lamperti E., et al. An autocrine vitamin D-driven Th1 shutdown program can be exploited for COVID-19. bioRxiv. 2020. DOI: https://doi.org/10.1101/2020.07.18.210161

86. Watkins R.R., Yamshchikov A. V., Lemonovich T.L., Salata R.A. The role of vitamin D deficiency in sepsis and potential therapeutic implications. J. Infect. 2011; 63 (5): 321–6.

87. Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020; 41 (1): 5–18. (in Russian)

88. Vanderheiden A., Ralfs P., Chirkova T., Upadhyay A.A., Zimmerman M.G., Bedoya S., et al. Type I and type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. J. Virol. 2020; 94 (19): e00985-20. DOI: https://doi.org/10.1128/jvi.00985-20

89. Lei X., Dong X., Ma R., Wang W., Xiao X., Tian Z., et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 2020; 11 (1): 3810. DOI: https://doi.org/10.1038/s41467-020-17665-9

90. Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020; 369 (6504): 718–24.

91. Lokugamage K.G., Hage A., de Vries M., Valero-Jimenez A.M., Schindewolf C., Dittmann M., et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J. Virol. 2020. DOI: https://doi.org/10.1128/jvi.01410-20

92. Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. DOI: https://doi.org/10.1016/j.antiviral.2020.104811

93. Zhao J., Wohlford-Lenane C., Zhao J., Fleming E., Lane T.E., McCray P.B., et al. Intranasal treatment with Poly(I{middle dot}C) protects aged mice from lethal respiratory virus infections. J. Virol. 2012; 86 (21): 11 416–24.

94. Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., et al. Dysregulated type i interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016; 19 (2): 181–93.

95. Israelow B., Song E., Mao T., Lu P., Meir A., Liu F., et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type i interferon signaling. J. Exp. Med. 2020; 217 (12): e20201241. DOI: https://doi.org/10.1084/JEM.20201241

96. Wang N., Zhan Y., Zhu L., Hou Z., Liu F., Song P., et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020; 28 (3): 455–64.e2.

97. Zhou Q., Chen V., Shannon C.P., Wei X.S., Xiang X., Wang X., et al. Interferon-α2b treatment for COVID-19. Front. Immunol. 2020; 11: 1061. DOI: https://doi.org/10.3389/fimmu.2020.01061.

98. Du L., Zhao G., Lin Y., Sui H., Chan C., Ma S., et al. Intranasal Vaccination of Recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J. Immunol. 2008; 180 (2): 948–56.

99. Wu S., Zhong G., Zhang J., Shuai L., Zhang Z., Wen Z., et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 2020; 11 (1): 4081. DOI: https://doi.org/10.1038/s41467-020-17972-1

100. Hassan A.O., Kafai N.M., Dmitriev I.P., Fox J.M., Smith B.K., Harvey I.B., et al. A Single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020. DOI: https://doi.org/10.1016/j.cell.2020.08.026

101. Zhu F.C., Li Y.H., Guan X.H., Hou L.H., Wang W.J., Li J.X., et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395 (10240): 1845–54.

102. Logunov D.Y., Dolzhikova I.V., Zubkova O.V., Tukhvatullin A.I., Shcheblyakov D.V., Dzharullaeva A.S., et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020; 6736 (20): 1–11.

103. Sheahan T., Morrison T.E., Funkhouser W., Uematsu S., Akira S., Baric R.S., et al. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog. 2008; 4: e1000240. DOI: https://doi.org/10.1371/journal.ppat.1000240

104. Totura A.L., Whitmore A., Agnihothram S., Schäfer A., Katze M.G., Heise M.T., et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio. 2015; 6 (3): 1–14.

105. Sterne J.A.C., Murthy S., Diaz J. V., Slutsky A.S., Villar J., Angus D.C., et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020; 324 (13): E1–12.

106. Kulkarni N.N., Gunnarsson H.I., Yi Z., Gudmundsdottir S., Sigurjonsson O.E., Agerberth B., et al. Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line. Immunobiology. 2016; 221 (2): 245–52.

107. Lan S.H., Lai C.C., Huang H.T., Chang S.P., Lu L.C., Hsueh P.R. Tocilizumab for severe COVID-19: a systematic review and meta-analysis. Int. J. Antimicrob. Agents. 2020; 56 (3): 106103. DOI: https://doi.org/10.1016/j.ijantimicag.2020.106103

108. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30 (3): 269–71.

109. Kužnik A., Benčina M., Švajger U., Jeras M., Rozman B., Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 2011; 186 (8): 4794–804.

110. Lee J., Chuang T.H., Redecke V., She L., Pitha P.M., Carson D.A., et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of toll-like receptor 7. Proc. Natl Acad. Sci. USA. 2003; 100 (11): 6646–51.

111. Hussain N., Chung E., Heyl J., Hussain B., Oh M., Pinon C., et al. A meta-analysis on the effects of hydroxychloroquine on COVID-19. Cureus. 2020; 12 (8): e10005. DOI: https://doi.org/10.7759/cureus.10005

112. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006; 444 (7121): 860–7.

113. Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007; 128 (1): 92–105.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»