Autorestriction and resolution of allergic process

Abstract

Allergen-specific inflammation is a particular manifestation of inflammation, a universal form of reactivity aimed at eliminating damage and restoring homeostasis. Modern data are presented that confirm the idea that the natural resolution of inflammation is an active process performed by coordinated cellular reactions. This process is induced and carried out by the action of anti-inflammatory mediators of various chemical nature and specialized lipid mediators. The mechanism for restriction and resolving inflammation includes inactivation of pro-inflammatory mediators, limitation of further recruitment and activation of inflammatory cells, apoptosis of these cells, switching of macrophages from M1 to M2 type, enhancement of efferocytosis, promoting the return of cells that have not undergone apoptosis to lymphatic and blood vessels, and initiation of tissue repair. Insufficiency or loss of anti-inflammatory and pro-resolving functions leads to prolongation of the inflammatory reaction, chronic inflammation, tissue remodeling and allergen-nonspecific tissue hyperreactivity. Restoration of insufficient or lost resolving function is a strategically justified task of creating new therapeutic approaches.

Keywords:allergy; allergic inflammation; resolution; anti-inflammatory mediators; eicosanoids, review

For citation: Gushchin I.S. Autorestriction and resolution of allergic process. Immunologiya. 2020; 41 (6): 557-80. DOI: https://doi.org/10.33029/0206-4952-2020-41-6-557-580 (in Russian)

Funding. The study had no sponsor support.

Conflict of interest. The author declares no conflict of interests.

References

1. Allergie. Kiev: Publê par l’académie des science de la RSS d’Ukraine, 1938. [Allergy. Kiev: Izdatel’stvo Akademii nauk USSR, 1938.] (in French; in Russian)

2. Kay A.B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 2001; 344 (1): 30–7. DOI: https://doi.org/10.1056/NEJM200101043440106

3. Kay A.B. Allergy and allergic diseases. Second of two parts. N. Engl. J. Med. 2001; 344 (2): 109–13. DOI: https://doi.org/10.1056/NEJM200101113440206

4. Galli S.J., Tsai M., Piliponsky A.M. The development of allergic inflammation. Nature. 2008; 454 (7203): 445–54. DOI: https://doi.org/10.1038/nature07204

5. Gushchin I.S. On the elements of biological expediency of allergic reactivity. Patologicheskaya fiziologiya i eksperimental’naya terapiya. 1979; (4): 3–11. (in Russian)

6. Robb C.T., Regan K.H., Dorward D.A., Rossi A.G. Key mechanisms governing resolution of lung inflammation. Semin. Immunopathol. 2016; 38 (4): 425–48. DOI: https://doi.org/10.1007/s00281-016-0560-6

7. Serhan C.N., Levy B.D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 2018; 128 (7): 2657–69. DOI: https://doi.org/10.1172/JCI97943

8. Wendell S.G., Baffi C., Holguin F. Fatty acids, inflammation, and asthma. J. Allergy Clin. Immunol. 2014; 133 (5): 1255–64. DOI: https://doi.org/10.1016/j.jaci.2013.12.1087

9. Barnig C., Bezema T., Calder P.C., et al. Activation of resolution pathways to prevent and fight chronic inflammation: lessons from asthma and inflammatory bowel disease. Front. Immunol. 2019; 10: 1699. Published 2019 Jul 23. DOI: https://doi.org/10.3389/fimmu.2019.01699

10. Miyata J., Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015; 64 (1): 27–34. DOI: https://doi.org/10.1016/j.alit.2014.08.003

11. Barnig C., Frossard N., Levy B.D. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol. Ther. 2018; 186: 98–113. DOI: https://doi.org/10.1016/j.pharmthera.2018.01.004

12. Chatterjee A., Komshian S., Sansbury B.E., et al. Biosynthesis of proresolving lipid mediators by vascular cells and tissues. FASEB J. 2017; 31 (8): 3393–402. DOI: https://doi.org/10.1096/fj.201700082R

13. Kytikova O., Novgorodtseva T., Denisenko Y., Antonyuk M., Gvozdenko T. Pro-resolving lipid mediators in the pathophysiology of asthma. Medicina (Kaunas). 2019; 55 (6): 284. Published 2019 Jun 18. DOI: https://doi.org/10.3390/medicina55060284

14. Samuelsson B., Dahlén S.E., Lindgren J.A., Rouzer C.A., Serhan C.N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987; 237 (4819): 1171–6. DOI: https://doi.org/10.1126/science.2820055

15. Serhan C.N., Hamberg M., Samuelsson B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc. Natl Acad. Sci. USA. 1984; 81 (17): 5335–9. DOI: https://doi.org/10.1073/pnas.81.17.5335

16. Serhan C.N., Hamberg M., Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem. Biophys. Res. Commun. 1984; 118 (3): 943–9. DOI: https://doi.org/10.1016/0006-291x(84)91486-4

17. Serhan C.N., Brain S.D., Buckley C.D., et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007; 21 (2): 325–32. DOI: https://doi.org/10.1096/fj.06-7227rev

18. Serhan C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014; 510 (7503): 92–101. DOI: https://doi.org/10.1038/nature13479

19. Henson P.M. Dampening inflammation. Nat. Immunol. 2005; 6 (12): 1179–81. DOI: https://doi.org/10.1038/ni1205-1179

20. Akdis C.A., Blaser K., Akdis M. Apoptosis in tissue inflammation and allergic disease. Curr. Opin. Immunol. 2004; 16 (6): 717–23. DOI: https://doi.org/10.1016/j.coi.2004.09.004

21. Ryan J.J., Kashyap M., Bailey D., et al. Mast cell homeostasis: a fundamental aspect of allergic disease. Crit. Rev. Immunol. 2007; 27 (1): 15–32. DOI: https://doi.org/10.1615/critrevimmunol.v27.i1.20

22. Medoff B.D., Thomas S.Y., Luster A.D. T cell trafficking in allergic asthma: the ins and outs. Annu. Rev. Immunol. 2008; 26: 205–32. DOI: https://doi.org/10.1146/annurev.immunol.26.021607.090312

23. Savill J., Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000; 407 (6805): 784–8. DOI: https://doi.org/10.1038/35037722

24. Haworth O., Cernadas M., Levy B.D. NK cells are effectors for resolvin E1 in the timely resolution of allergic airway inflammation. J. Immunol. 2011; 186 (11): 6129–35. DOI: https://doi.org/10.4049/jimmunol.1004007

25. Awad A., Yassine H., Barrier M., et al. Natural killer cells induce eosinophil activation and apoptosis. PLoS One. 2014; 9 (4): e94492. Published 2014 Apr 11. DOI: https://doi.org/10.1371/journal.pone.0094492

26. Barnig C., Cernadas M., Dutile S., et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 2013; 5 (174): 174ra26

27. Duvall M.G., Barnig C., Cernadas M., et al. Natural killer cell-mediated inflammation resolution is disabled in severe asthma. Sci. Immunol. 2017; 2 (9): eaam5446. DOI: https://doi.org/10.1126/sciimmunol.aam5446

28. Motwani M.P., Gilroy D.W. Macrophage development and polarization in chronic inflammation. Semin. Immunol. 2015; 27 (4): 257–66. DOI: https://doi.org/10.1016/j.smim.2015.07.002

29. Gordon S., Plüddemann A., Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev. 2014; 262 (1): 36–55. DOI: https://doi.org/10.1111/imr.12223

30. Hussell T., Bell T.J. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014; 14 (2): 81–93. DOI: https://doi.org/10.1038/nri3600

31. Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; 6: 13. Published 2014 Mar 3. DOI: https://doi.org/10.12703/P6-13

32. Murray P.J., Allen J.E., Biswas S.K., et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41 (1): 14–20. DOI: https://doi.org/10.1016/j.immuni.2014.06.008

33. Savill J. Recognition and phagocytosis of cells undergoing apoptosis. Br. Med. Bull. 1997; 53 (3): 491–508. DOI: https://doi.org/10.1093/oxfordjournals.bmb.a011626

34. Savill J. Apoptosis in resolution of inflammation. J. Leukoc. Biol. 1997; 61 (4): 375–80. DOI: https://doi.org/10.1002/jlb.61.4.375

35. Krishnamoorthy N., Burkett P.R., Dalli J., et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J. Immunol. 2015; 194 (3): 863–7. DOI: https://doi.org/10.4049/jimmunol.1402534

36. Zeiger R.S., Twarog F.J., Colten H.R. Histaminase release from human granulocytes. J. Exp. Med. 1976; 144 (4): 1049–61. DOI: https://doi.org/10.1084/jem.144.4.1049

37. Zeiger R.S., Colten H.R. Histaminase release from human eosinophils. J. Immunol. 1977; 118 (2): 540–3.

38. Herman J.J. Eosinophil diamine oxidase activity in acute inflammation in humans. Agents Actions. 1982; 12 (1–2): 46–8. DOI: https://doi.org/10.1007/bf01965105

39. Popper H., Knipping G., Czarnetzki B.M., Steiner R., Helleis G., Auer H. Activation and release of enzymes and major basic protein from guinea pig eosinophil granulocytes induced by different inflammatory stimuli and other substances. A histochemical, biochemical, and electron microscopic study. Inflammation. 1989; 13 (2): 147–62. DOI: https://doi.org/10.1007/bf00924786

40. Wasserman S.I., Goetzl E.J., Austen K.F. Inactivation of slow reacting substance of anaphylaxis by human eosinophil arylsulfatase. J. Immunol. 1975; 114 (2 Pt 1): 645–9.

41. Henderson W.R., Jörg A., Klebanoff S.J. Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4, and D4. J. Immunol. 1982; 128 (6): 2609–13.

42. Henderson W.R., Jong E.C., Klebanoff S.J. Binding of eosinophil peroxidase to mast cell granules with retention of peroxidatic activity. J. Immunol. 1980; 124 (3): 1383–8.

43. Kater L.A., Goetzl E.J., Austen K.F. Isolation of human eosinophil phospholipase D. J. Clin. Invest. 1976; 57 (5): 1173–80. DOI: https://doi.org/10.1172/JCI108385

44. Bartemes K.R., McKinney S., Gleich G.J., Kita H. Endogenous platelet-activating factor is critically involved in effector functions of eosinophils stimulated with IL-5 or IgG. J. Immunol. 1999; 162 (5): 2982–9.

45. Hubscher T. Role of the eosinophil in the allergic reactions. II. Release of prostaglandins from human eosinophilic leukocytes. J. Immunol. 1975; 114 (4): 1389–93.

46. Takeda K., Shiraishi Y., Ashino S., et al. Eosinophils contribute to the resolution of lung-allergic responses following repeated allergen challenge. J. Allergy Clin. Immunol. 2015; 135 (2): 451–60. DOI: https://doi.org/10.1016/j.jaci.2014.08.014

47. Arita M. Mediator lipidomics in acute inflammation and resolution. J. Biochem. 2012; 152 (4): 313–9. DOI: https://doi.org/10.1093/jb/mvs092

48. Miyata J., Fukunaga K., Iwamoto R., et al. Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma. J. Allergy Clin. Immunol. 2013; 131 (2): 353–60.e1–2. DOI: https://doi.org/10.1016/j.jaci.2012.07.048

49. Gushchin I.S., Chitayeva V.G. Allergy to insects. Moscow: Farmarus Print, 2003. (in Russian)

50. Schuurman J., Perdok G.J., Gorter A.D., Aalberse R.C. The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol. Immunol. 2001; 38 (1): 1–8. DOI: https://doi.org/10.1016/s0161-5890(01)00050-5

51. Scott-Taylor T.H., Axinia S.C., Amin S., Pettengell R. Immunoglobulin G; structure and functional implications of different subclass modifications in initiation and resolution of allergy. Immun. Inflamm. Dis. 2018; 6 (1): 13–33. DOI: https://doi.org/10.1002/iid3.192

52. Grimbaldeston M.A., Nakae S., Kalesnikoff J., Tsai M., Galli S.J. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat. Immunol. 2007; 8 (10): 1095–104. DOI: https://doi.org/10.1038/ni1503

53. Opal S.M., DePalo V.A. Anti-inflammatory cytokines. Chest. 2000; 117 (4): 1162–72. DOI: https://doi.org/10.1378/chest.117.4.1162

54. Li M.O., Flavell R.A. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity. 2008; 28 (4): 468–76. DOI: https://doi.org/10.1016/j.immuni.2008.03.003

55. Letterio J.J., Roberts A.B. Regulation of immune responses by TGF-beta. Annu. Rev. Immunol. 1998; 16: 137–61. DOI: https://doi.org/10.1146/annurev.immunol.16.1.137

56. Burgel P.R., Lazarus S.C., Tam D.C., et al. Human eosinophils induce mucin production in airway epithelial cells via epidermal growth factor receptor activation. J. Immunol. 2001; 167 (10): 5948–54. DOI: https://doi.org/10.4049/jimmunol.167.10.5948

57. Vignali D.A., Collison L.W., Workman C.J. How regulatory T cells work. Nat. Rev. Immunol. 2008; 8 (7): 523–32. DOI: https://doi.org/10.1038/nri2343

58. Shilovskiy I.P., Dyneva M.E., Kurbacheva O.M., Kudlay D.A., Khaitov M.R. The role of interleukin-37 in the pathogenesis of allergic diseases. Acta Naturae. 2019; 11 (4): 54–64. DOI: https://doi.org/10.32607/20758251-2019-11-4-54-64

59. Dinarello C.A., Bufler P. Interleukin-37. Semin. Immunol. 2013; 25 (6): 466–8. DOI: https://doi.org/10.1016/j.smim.2013.10.004

60. Molgora M., Supino D., Mantovani A., Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol. Rev. 2018; 281 (1): 233–47. DOI: https://doi.org/10.1111/imr.12609

61. Theoharides T.C., Tsilioni I., Conti P. Mast cells may regulate the anti-inflammatory activity of IL-37. Int. J. Mol. Sci. 2019; 20 (15): 3701. Published 2019 Jul 29. DOI: https://doi.org/10.3390/ijms20153701

62. Zhao M., Li Y., Guo C., et al. IL-37 isoform D downregulates pro-inflammatory cytokines expression in a Smad3-dependent manner. Cell Death Dis. 2018; 9 (6): 582. Published 2018 May 22. DOI: https://doi.org/10.1038/s41419-018-0664-0

63. Pan G., Risser P., Mao W., et al. IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp. Cytokine. 2001; 13 (1): 1–7. DOI: https://doi.org/10.1006/cyto.2000.0799

64. Kumar S., Hanning C.R., Brigham-Burke M.R., et al. Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine. 2002; 18 (2): 61–71. DOI: https://doi.org/10.1006/cyto.2002.0873

65. Jia H., Liu J., Han B. Reviews of interleukin-37: functions, receptors, and roles in diseases. Biomed. Res. Int. 2018; 2018: 3058640. Published 2018 Apr 1. DOI: https://doi.org/10.1155/2018/3058640

66. Bufler P., Azam T., Gamboni-Robertson F., et al. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc. Natl Acad. Sci. USA. 2002; 99 (21): 13 723–8. DOI: https://doi.org/10.1073/pnas.212519099

67. Cavalli G., Justice J.N., Boyle K.E., et al. Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. Proc. Natl Acad. Sci. USA. 2017; 114 (9): 2313–8. DOI: https://doi.org/10.1073/pnas.1619011114

68. Dinarello C.A., Nold-Petry C., Nold M., et al. Suppression of innate inflammation and immunity by interleukin-37. Eur. J. Immunol. 2016; 46 (5): 1067–81. DOI: https://doi.org/10.1002/eji.201545828

69. Eisenmesser E.Z., Gottschlich A., Redzic J.S., et al. Interleukin-37 monomer is the active form for reducing innate immunity. Proc. Natl Acad. Sci. USA. 2019; 116 (12): 5514–22. DOI: https://doi.org/10.1073/pnas.1819672116

70. Abulkhir A., Samarani S., Amre D., et al. A protective role of IL-37 in cancer: a new hope for cancer patients. J. Leukoc. Biol. 2017; 101 (2): 395–406. DOI: https://doi.org/10.1189/jlb.5RU0816-341R

71. Cavalli G., Koenders M., Kalabokis V., et al. Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation [published correction appears in Rheumatology (Oxford). 2017; 56 (12): 2256]. Rheumatology (Oxford). 2016; 55 (12): 2220–9. DOI: https://doi.org/10.1093/rheumatology/kew325

72. Li S., Neff C.P., Barber K., et al. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc. Natl Acad. Sci. USA. 2015; 112 (8): 2497–502. DOI: https://doi.org/10.1073/pnas.1424626112

73. Haskó G., Cronstein B. Regulation of inflammation by adenosine. Front. Immunol. 2013; 4: 85. Published 2013 Apr 8. DOI: https://doi.org/10.3389/fimmu.2013.00085

74. Ohashi E., Kohno K., Arai N., Harashima A., Ariyasu T., Ushio S. Adenosine N1-oxide exerts anti-inflammatory effects through the PI3K/Akt/GSK-3β signaling pathway and promotes osteogenic and adipocyte differentiation. Biol. Pharm. Bull. 2019; 42 (6): 968–76. DOI: https://doi.org/10.1248/bpb.b18-00988

75. Wang L., Wan H., Tang W., et al. Critical roles of adenosine A2A receptor in regulating the balance of Treg/Th17 cells in allergic asthma. Clin. Respir. J. 2018; 12 (1): 149–57. DOI: https://doi.org/10.1111/crj.12503

76. Cicala C., Ialenti A. Adenosine signaling in airways: toward a promising antiasthmatic approach. Eur. J. Pharmacol. 2013; 714 (1–3): 522–5. DOI: https://doi.org/10.1016/j.ejphar.2013.06.033

77. Fan M., Jamal Mustafa S. Role of adenosine in airway inflammation in an allergic mouse model of asthma. Int. Immunopharmacol. 2006; 6 (1): 36–45. DOI: https://doi.org/10.1016/j.intimp.2005.07.008

78. Wimmer M., Alessandrini F., Gilles S., et al. Pollen-derived adenosine is a necessary cofactor for ragweed allergy. Allergy. 2015; 70 (8): 944–54. DOI: https://doi.org/10.1111/all.12642

79. Fan M., Qin W., Mustafa S.J. Characterization of adenosine receptor(s) involved in adenosine-induced bronchoconstriction in an allergic mouse model. Am. J. Physiol. Lung Cell Mol. Physiol. 2003; 284 (6): L1012–9. DOI: https://doi.org/10.1152/ajplung.00353.2002

80. CMKLR1 chemerin chemokine-like receptor 1 [ Homo sapiens (human)]. URL: https://www.ncbi.nlm.nih.gov/gene/1240 (date of access September 08, 2020)

81. Helfer G., Wu Q.F. Chemerin: a multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018; 238 (2): R79–94. DOI: https://doi.org/10.1530/JOE-18-0174

82. Otero K., Vecchi A., Hirsch E., et al. Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood. 2010; 116 (16): 2942–9. DOI: https://doi.org/10.1182/blood-2009-12-259903

83. Zhao L., Yang W., Yang X., et al. Chemerin suppresses murine allergic asthma by inhibiting CCL2 production and subsequent airway recruitment of inflammatory dendritic cells. Allergy. 2014; 69 (6): 763–74. DOI: https://doi.org/10.1111/all.12408

84. Iqbal A.J., Sampaio A.L., Maione F., et al. Endogenous galectin-1 and acute inflammation: emerging notion of a galectin-9 pro-resolving effect. Am. J. Pathol. 2011; 178 (3): 1201–9. DOI: https://doi.org/10.1016/j.ajpath.2010.11.073

85. Ahmed T.J., Kaneva M.K., Pitzalis C., Cooper D., Perretti M. Resolution of inflammation: examples of peptidergic players and pathways. Drug Discov. Today. 2014; 19 (8): 1166–71. DOI: https://doi.org/10.1016/j.drudis.2014.05.020

86. Saegusa J., Hsu D.K., Chen H.Y., et al. Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am. J. Pathol. 2009; 174 (3): 922–31. DOI: https://doi.org/10.2353/ajpath.2009.080500

87. Ge X.N., Bahaie N.S., Kang B.N., et al. Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J. Immunol. 2010; 185 (2): 1205–14. DOI: https://doi.org/10.4049/jimmunol.1000039

88. Ge X.N., Ha S.G., Liu F.T., Rao S.P., Sriramarao P. Eosinophil-expressed galectin-3 regulates cell trafficking and migration. Front. Pharmacol. 2013; 4: 37. Published 2013 Apr 5. DOI: https://doi.org/10.3389/fphar.2013.00037

89. del Pozo V., Rojo M., Rubio M.L., et al. Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene down-regulation. Am. J. Respir. Crit. Care Med. 2002; 166 (5): 732–7. DOI: https://doi.org/10.1164/rccm.2111031

90. López E., del Pozo V., Miguel T., et al. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J. Immunol. 2006; 176 (3): 1943–50. DOI: https://doi.org/10.4049/jimmunol.176.3.1943

91. López E., Zafra M.P., Sastre B., Gámez C., Lahoz C., del Pozo V. Gene expression profiling in lungs of chronic asthmatic mice treated with galectin-3: down-regulation of inflammatory and regulatory genes. Mediators Inflamm. 2011; 2011: 823279. DOI: https://doi.org/10.1155/2011/823279

92. Andrade F.E.C., Corrêa M.P., Gimenes A.D., et al. Galectin-3: role in ocular allergy and potential as a predictive biomarker. Br. J. Ophthalmol. 2018; 102 (7): 1003–10. DOI: https://doi.org/10.1136/bjophthalmol-2017-311473

93. Corrêa M.P., Andrade F.E.C., Gimenes A.D., Gil C.D. Anti-inflammatory effect of galectin-1 in a murine model of atopic dermatitis. J. Mol. Med. (Berl.). 2017; 95 (9): 1005–15. DOI: https://doi.org/10.1007/s00109-017-1566-9

94. Xie R.D., Xu L.Z., Yang L.T., et al. Galectin-1 inhibits oral-intestinal allergy syndrome. Oncotarget. 2017; 8 (8): 13 214–22. DOI: https://doi.org/10.18632/oncotarget.14571

95. Mello C.B., Ramos L., Gimenes A.D., Andrade T.R., Oliani S.M., Gil C.D. Immunomodulatory effects of galectin-1 on an IgE-mediated allergic conjunctivitis model. Invest. Ophthalmol. Vis. Sci. 2015; 56 (2): 693–704. Published 2015 Jan 8. DOI: https://doi.org/10.1167/iovs.14-15100

96. Rosenberg H.F., Druey K.M. Eosinophils, galectins, and a reason to breathe. Proc. Natl Acad. Sci. USA. 2016; 113 (33): 9139–41. DOI: https://doi.org/10.1073/pnas.1610644113

97. Katoh S., Ishii N., Nobumoto A., et al. Galectin-9 inhibits CD44-hyaluronan interaction and suppresses a murine model of allergic asthma. Am. J. Respir. Crit. Care Med. 2007; 176 (1): 27–35. DOI: https://doi.org/10.1164/rccm.200608-1243OC

98. de Kivit S., Saeland E., Kraneveld A.D., et al. Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy. 2012; 67 (3): 343–52. DOI: https://doi.org/10.1111/j.1398-9995.2011.02771.x

99. Kubach J., Lutter P., Bopp T., et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood. 2007; 110 (5): 1550–8. DOI: https://doi.org/10.1182/blood-2007-01-0692

100. Delgado M., Ganea D. Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav. Immun. 2008; 22 (8): 1146–51. DOI: https://doi.org/10.1016/j.bbi.2008.06.001

101. Anderson P., Delgado M. Endogenous anti-inflammatory neuropeptides and pro-resolving lipid mediators: a new therapeutic approach for immune disorders. J. Cell. Mol. Med. 2008; 12 (5B): 1830–47. DOI: https://doi.org/10.1111/j.1582-4934.2008.00387.x

102. Abad C., Tan Y.V. Immunomodulatory roles of PACAP and VIP: lessons from knockout mice. J. Mol. Neurosci. 2018; 66 (1): 102–13. DOI: https://doi.org/10.1007/s12031-018-1150-y

103. Kabata H., Artis D. Neuro-immune crosstalk and allergic inflammation. J. Clin. Invest. 2019; 129 (4): 1475–82. Published 2019 Mar 4. DOI: https://doi.org/10.1172/JCI124609

104. Pongratz G., Straub R.H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 2014; 16 (6): 504. DOI: https://doi.org/10.1186/s13075-014-0504-2

105. Scanzano A., Cosentino M. Adrenergic regulation of innate immunity: a review. Front. Pharmacol. 2015; 6: 171. Published 2015 Aug 13. DOI: https://doi.org/10.3389/fphar.2015.00171

106. Bosmans G., Shimizu Bassi G., Florens M., Gonzalez-Dominguez E., Matteoli G., Boeckxstaens G.E. Cholinergic modulation of type 2 immune responses. Front. Immunol. 2017; 8: 1873. Published 2017 Dec 19. DOI: https://doi.org/10.3389/fimmu.2017.01873

107. Leoni G., Nusrat A. Annexin A1: shifting the balance towards resolution and repair. Biol. Chem. 2016; 397 (10): 971–9. DOI: https://doi.org/10.1515/hsz-2016-0180

108. Parisi J.D.S., Corrêa M.P., Gil C.D. Lack of endogenous annexin A1 increases mast cell activation and exacerbates experimental atopic dermatitis. Cells. 2019; 8 (1): 51. Published 2019 Jan 15. DOI: https://doi.org/10.3390/cells8010051

109. Leoni G., Neumann P.A., Kamaly N., et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Invest. 2015; 125 (3): 1215–27. DOI: https://doi.org/10.1172/JCI76693

110. Leoni G., Alam A., Neumann P.A., et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Invest. 2013; 123 (1): 443–54. DOI: https://doi.org/10.1172/JCI65831

111. Yazid S., Leoni G., Getting S.J., et al. Antiallergic cromones inhibit neutrophil recruitment onto vascular endothelium via annexin-A1 mobilization. Arteriosclerosis Thromb. Vasc. Biol. 2010; 30: 1718–24.

112. Brancaleone V., Mitidieri E., Flower R.J., Cirino G., Perretti M. Annexin A1 mediates hydrogen sulfide properties in the control of inflammation. J. Pharmacol. Exp. Ther. 2014; 351 (1): 96–104. DOI: https://doi.org/10.1124/jpet.114.217034

113. Li Y., Cai L., Wang H., et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2 [published correction appears in Oncogene. 2011; 30 (42): 4373–4]. Oncogene. 2011; 30 (36): 3887–99. DOI: https://doi.org/10.1038/onc.2011.112

114. Locatelli I., Sutti S., Jindal A., et al. Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology. 2014; 60 (2): 531–44. DOI: https://doi.org/10.1002/hep.27141

115. Blume K.E., Soeroes S., Keppeler H., et al. Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic «find-me» signal. J. Immunol. 2012; 188 (1): 135–45. DOI: https://doi.org/10.4049/jimmunol.1004073

116. Sinniah A., Yazid S., Perretti M., Solito E., Flower R.J. The role of the Annexin-A1/FPR2 system in the regulation of mast cell degranulation provoked by compound 48/80 and in the inhibitory action of nedocromil. Int. Immunopharmacol. 2016; 32: 87–95. DOI: https://doi.org/10.1016/j.intimp.2016.01.003

117. Serhan C.N. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Aspects Med. 2017; 58: 1–11. DOI: https://doi.org/10.1016/j.mam.2017.03.001

118. Hansen T.V., Vik A., Serhan C.N. The protectin family of specialized pro-resolving mediators: potent immunoresolvents enabling innovative approaches to target obesity and diabetes. Front Pharmacol. 2019; 9: 1582. Published 2019 Jan 17. DOI: https://doi.org/10.3389/fphar.2018.01582

119. Clària J., Lee M.H., Serhan C.N. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation. Mol. Med. 1996; 2 (5): 583–96.

120. Planagumà A., Pfeffer M.A., Rubin G., et al. Lovastatin decreases acute mucosal inflammation via 15-epi-lipoxin A4. Mucosal Immunol. 2010; 3 (3): 270–9. DOI: https://doi.org/10.1038/mi.2009.141

121. Ortega-Gómez A., Perretti M., Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol. Med. 2013; 5 (5): 661–74. DOI: https://doi.org/10.1002/emmm.201202382

122. Clish C.B., Levy B.D., Chiang N., Tai H.H., Serhan C.N. Oxidoreductases in lipoxin A4 metabolic inactivation: a novel role for 15-onoprostaglandin 13-reductase/leukotriene B4 12-hydroxydehydrogenase in inflammation. J. Biol. Chem. 2000; 275 (33): 25 372–80. DOI: https://doi.org/10.1074/jbc.M002863200

123. Serhan C.N., Maddox J.F., Petasis N.A., et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry. 1995; 34 (44): 14 609–15. DOI: https://doi.org/10.1021/bi00044a041

124. Cooray S.N., Gobbetti T., Montero-Melendez T., et al. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc. Natl Acad. Sci. USA. 2013; 110 (45): 18 232–7. DOI: https://doi.org/10.1073/pnas.1308253110

125. Bonnans C., Fukunaga K., Levy M.A., Levy B.D. Lipoxin A(4) regulates bronchial epithelial cell responses to acid injury. Am. J. Pathol. 2006; 168 (4): 1064–72. DOI: https://doi.org/10.2353/ajpath.2006.051056

126. Chiang N., Takano T., Arita M., Watanabe S., Serhan C.N. A novel rat lipoxin A4 receptor that is conserved in structure and function. Br. J. Pharmacol. 2003; 139 (1): 89–98. DOI: https://doi.org/10.1038/sj.bjp.0705220

127. Gronert K., Martinsson-Niskanen T., Ravasi S., Chiang N., Serhan C.N. Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses. Am. J. Pathol. 2001; 158 (1): 3–9. DOI: https://doi.org/10.1016/S0002-9440(10)63937-5

128. Node K., Huo Y., Ruan X., et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999; 285 (5431): 1276–9. DOI: https://doi.org/10.1126/science.285.5431.1276

129. Chung K.F. Lipoxins and epoxyeicosatrienoic acids. Potential for inhibitors of soluble epoxide hydrolase in severe asthma? Am. J. Respir. Crit. Care Med. 2014; 190 (8): 848–50. DOI: https://doi.org/10.1164/rccm.201409-1659ED

130. Gilroy D.W., Edin M.L., De Maeyer R.P., et al. CYP450-derived oxylipins mediate inflammatory resolution. Proc. Natl Acad. Sci. USA. 2016; 113 (23): E3240–9. DOI: https://doi.org/10.1073/pnas.1521453113

131. Schmelzer K.R., Kubala L., Newman J.W., Kim I.H., Eiserich J.P., Hammock B.D. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc. Natl Acad. Sci. USA. 2005; 102 (28): 9772–7. DOI: https://doi.org/10.1073/pnas.0503279102

132. Ono E., Dutile S., Kazani S., et al. Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. Am. J. Respir. Crit. Care Med. 2014; 190 (8): 886–97. DOI: https://doi.org/10.1164/rccm.201403-0544OC

133. Panigrahy D., Gilligan M.M., Huang S., et al. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev. 2020; 39 (2): 337–40. DOI: https://doi.org/10.1007/s10555-020-09889-4

134. Kasuga K., Yang R., Porter T.F., et al. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J. Immunol. 2008; 181 (12): 8677–87. DOI: https://doi.org/10.4049/jimmunol.181.12.8

135. Murakami M., Taketomi Y., Sato H., Yamamoto K. Secreted phospholipase A2 revisited. J. Biochem. 2011; 150 (3): 233–55. DOI: https://doi.org/10.1093/jb/mvr088

136. Duvall M.G., Levy B.D. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur. J. Pharmacol. 2016; 785: 144–55. DOI: https://doi.org/10.1016/j.ejphar.2015.11.001

137. Serhan C.N., Hong S., Gronert K., et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 2002; 196 (8): 1025–37. DOI: https://doi.org/10.1084/jem.20020760

138. Krishnamoorthy S., Recchiuti A., Chiang N., et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl Acad. Sci. USA. 2010; 107 (4): 1660–5. DOI: https://doi.org/10.1073/pnas.0907342107

139. Krishnamoorthy S., Recchiuti A., Chiang N., Fredman G., Serhan C.N. Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am. J. Pathol. 2012; 180 (5): 2018–27. DOI: https://doi.org/10.1016/j.ajpath.2012.01.028

140. Miyahara T., Runge S., Chatterjee A., et al. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. FASEB J. 2013; 27 (6): 2220–32. DOI: https://doi.org/10.1096/fj.12-225615

141. Pirault J., Bäck M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol. 2018; 9: 1273. Published 2018 Nov 14. DOI: https://doi.org/10.3389/fphar.2018.01273

142. Hong S., Tjonahen E., Morgan E.L., Lu Y., Serhan C.N., Rowley A.F. Rainbow trout (Oncorhynchus mykiss) brain cells biosynthesize novel docosahexaenoic acid-derived resolvins and protectins-Mediator lipidomic analysis. Prostaglandins Other Lipid Mediat. 2005; 78 (1–4): 107–16. DOI: https://doi.org/10.1016/j.prostaglandins.2005.04.004

143. Chiang N., Libreros S., Norris P.C., de la Rosa X., Serhan C.N. Maresin 1 activates LGR6 receptor promoting phagocyte immunoresolvent functions. J. Clin. Invest. 2019; 129 (12): 5294–311. DOI: https://doi.org/10.1172/JCI129448

144. Abdulnour R.E., Dalli J., Colby J.K., et al. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proc. Natl Acad. Sci. USA. 2014; 111 (46): 16 526–31. DOI: https://doi.org/10.1073/pnas.1407123111

145. Isobe Y., Arita M., Matsueda S., et al. Identification and structure determination of novel anti-inflammatory mediator resolvin E3, 17,18-dihydroxyeicosapentaenoic acid. J. Biol. Chem. 2012; 287 (13): 10 525–34. DOI: https://doi.org/10.1074/jbc.M112.340612

146. Arita M., Ohira T., Sun Y.P., Elangovan S., Chiang N., Serhan C.N. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 2007; 178 (6): 3912–7. DOI: https://doi.org/10.4049/jimmunol.178.6.3912

147. Freire M.O., Dalli J., Serhan C.N., Van Dyke T.E. Neutrophil resolvin E1 receptor expression and function in type 2 diabetes. J. Immunol. 2017; 198 (2): 718–28. DOI: https://doi.org/10.4049/jimmunol.1601543

148. Levy B.D., Lukacs N.W., Berlin A.A., et al. Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism. FASEB J. 2007; 21 (14): 3877–84. DOI: https://doi.org/10.1096/fj.07-8653com

149. Levy B.D., De Sanctis G.T., Devchand P.R., et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat. Med. 2002; 8 (9): 1018–23. DOI: https://doi.org/10.1038/nm748

150. Haworth O., Cernadas M., Yang R., Serhan C.N., Levy B.D. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat. Immunol. 2008; 9 (8): 873–9. DOI: https://doi.org/10.1038/ni.1627

151. Karra L., Haworth O., Priluck R., Levy B.D., Levi-Schaffer F. Lipoxin B promotes the resolution of allergic inflammation in the upper and lower airways of mice. Mucosal Immunol. 2015; 8 (4): 852–62. DOI: https://doi.org/10.1038/mi.2014.116

152. Rogerio A.P., Haworth O., Croze R., et al. Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. J. Immunol. 2012; 189 (4): 1983–91. DOI: https://doi.org/10.4049/jimmunol.1101665

153. Aoki H., Hisada T., Ishizuka T., et al. Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem. Biophys. Res. Commun. 2008; 367 (2): 509–15. DOI: https://doi.org/10.1016/j.bbrc.2008.01.012

154. Flesher R.P., Herbert C., Kumar R.K. Resolvin E1 promotes resolution of inflammation in a mouse model of an acute exacerbation of allergic asthma. Clin. Sci. (Lond.). 2014; 126 (11): 805–14. DOI: https://doi.org/10.1042/CS20130623

155. Kim T.H., Kim G.D., Jin Y.H., Park Y.S., Park C.S. Omega-3 fatty acid-derived mediator, Resolvin E1, ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice. Int. Immunopharmacol. 2012; 14 (4): 384–91. DOI: https://doi.org/10.1016/j.intimp.2012.08.005

156. Sawada Y., Honda T., Hanakawa S., et al. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. J. Exp. Med. 2015; 212 (11): 1921–30. DOI: https://doi.org/10.1084/jem.20150381

157. Sato M., Aoki-Saito H., Fukuda H., et al. Resolvin E3 attenuates allergic airway inflammation via the interleukin-23-interleukin-17A pathway. FASEB J. 2019; 33 (11): 12 750–9. DOI: https://doi.org/10.1096/fj.201900283R

158. Levy B.D., Kohli P., Gotlinger K., et al. Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness. J. Immunol. 2007; 178 (1): 496–502. DOI: https://doi.org/10.4049/jimmunol.178.1.496

159. Vachier I., Bonnans C., Chavis C., et al. Severe asthma is associated with a loss of LX4, an endogenous anti-inflammatory compound. J. Allergy Clin. Immunol. 2005; 115 (1): 55–60. DOI: https://doi.org/10.1016/j.jaci.2004.09.038

160. Levy B.D., Bonnans C., Silverman E.S., et al. Diminished lipoxin biosynthesis in severe asthma. Am. J. Respir. Crit. Care Med. 2005; 172 (7): 824–30. DOI: https://doi.org/10.1164/rccm.200410-1413OC

161. Planagumà A., Kazani S., Marigowda G., et al. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am. J. Respir. Crit. Care Med. 2008; 178 (6): 574–82. DOI: https://doi.org/10.1164/rccm.200801-061OC

162. Kazani S., Planaguma A., Ono E., et al. Exhaled breath condensate eicosanoid levels associate with asthma and its severity. J. Allergy Clin. Immunol. 2013; 132 (3): 547–53. DOI: https://doi.org/10.1016/j.jaci.2013.01.058

163. Krishnamoorthy N., Abdulnour R.E., Walker K.H., Engstrom B.D., Levy B.D. Specialized proresolving mediators in innate and adaptive immune responses in airway diseases. Physiol. Rev. 2018; 98 (3): 1335–70. DOI: https://doi.org/10.1152/physrev.00026.2017

164. Ricklefs I., Barkas I., Duvall M.G., et al. ALX receptor ligands define a biochemical endotype for severe asthma [published correction appears in JCI Insight. 2018; 3 (6)]. JCI Insight. 2017; 2 (14): e93534. Published 2017 Jul 20. DOI: https://doi.org/10.1172/jci.insight.93534

165. Töröcsik D., Weise C., Gericke J., et al. Transcriptomic and lipidomic profiling of eicosanoid/docosanoid signalling in affected and non-affected skin of human atopic dermatitis patients. Exp. Dermatol. 2019; 28 (2): 177–89. DOI: https://doi.org/10.1111/exd.13867

166. Park J., Langmead C.J., Riddy D.M. New advances in targeting the resolution of inflammation: implications for specialized pro-resolving mediator GPCR Drug Discovery. ACS Pharmacol. Transl. Sci. 2020; 3 (1): 88–106. Published 2020 Jan 20. DOI: https://doi.org/10.1021/acsptsci.9b00075

167. Mastromarino M., Lacivita E., Colabufo N.A., Leopoldo M. G-protein coupled receptors involved in the resolution of inflammation: ligands and therapeutic perspectives. Mini Rev. Med. Chem. 2020; 2020: 10.2174/1389557520666200719014433. Published 2020 Jul 18. DOI: https://doi.org/10.2174/1389557520666200719014433

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»