Epigenetics of bronchial asthma

AbstractBronchial asthma (BA) is a chronic inflammatory disease of the respiratory tract. The etiopathogenesis of BA is diverse and is still poorly understood. Epigenetic mechanisms of gene expression regulation are believed to be an important factor associated with the clinical heterogeneity of this disease. A number of studies have established the relationship of individual epigenetic features with predisposition to BA, with the severity of clinical manifestations of the disease, and with the nature of response to drug therapy. In particular, DNA methylation, regulation of genetic activity by microRNA molecules, and modifications of histones are considered to be important mechanisms of epigenetic regulation of inflammatory response of BA. In the review these mechanisms are examined in the context of BA pathogenesis and therapy and information on the main methods for assessing epigenetic modifications is provided. Further study of epigenetic aspects of BA is relevant and important not only from the point of view of basic science, but also of practical medicine, due to the possibility of personalization of BA diagnosis and therapy.

Keywords:epigenetics; pharmacoepigenetics; bronchial asthma; DNA methylation; microRNA; histones modifications

For citation: Timoshenko D.O., Kofiadi I.A., Gudima G.O., Kurbacheva O.M. Epigenetics of bronchial asthma. Immunologiya. 2021; 42 (2): 93-101. DOI: https://doi.org/10.33029/0206-4952-2021-42-2-93-101 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Federal clinical guidelines for bronchial asthma diagnosis and management. 2019. URL: https://spulmo.ru/upload/kr_bronhastma_2019.pdf (in Russian)

2. Global Initiative for Asthma (GINA Report). Global Strategy for Asthma Management and Prevention, 2020. URL: https://ginasthma.org

3. Kabesch M., Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin. Immunopathol. 2020; 42 (1): 43–60. DOI: https://doi.org/10.1007/s00281-019-00777-w

4. Patkin E.L., Quinn J. Epigenetical mechanisms of susceptibility to complex human diseases. Ekologicheskaya genetika. 2010; 8 (4): 44–56. (in Russian)

5. Chatterjee A., Rodger E.J., Morison I.M., Eccles M.R., Stockwell P.A. Tools and strategies for analysis of genome-wide and gene-specific DNA methylation patterns. Methods Mol. Biol. 2017; 1537: 249–77. DOI: https://doi.org/10.1007/978-1-4939-6685-1_15

6. Yao Q., Chen Y., Zhou X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019; 51: 11–7.

7. Önder Ö., Sidoli S., Carroll M., Garcia B.A. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev. Proteomics. 2015; 12 (5): 499–517. DOI: https://doi.org/10.1586/14789450.2015.1084231

8. Shchuko A.G., Veselov A.A., Yur’eva T.N., Volkova N.V., Shabanov G.A., Rybchenko A.A., Pochtarenko T.V. Epigenetics and methods of its realization. Sibirskiy nauchniy meditsinskiy zhurnal. 2017; 37 (4): 26–36. (in Russian)

9. Potaczek D.P., Harb H., Michel S., Alhamwe B.A., Renz H., Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics. 2017; 9 (4): 539–71. DOI: https://doi.org/10.2217/epi-2016-0162

10. Majchrzak-Celińska A., Baer-Dubowska W. Pharmacoepigenetics: an element of personalized therapy? Expert Opin. Drug Metab. Toxicol. 2017; 13 (4): 387–98. DOI: https://doi.org/10.1080/17425255.2017.1260546

11. Farzan N., Vijverberg S.J., Kabesch M., Sterk P.J., Maitland-van der Zee A.H. The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: where do we stand? Pediatr. Pulmonol. 2018; 53 (6): 836–45. DOI: https://doi.org/10.1002/ppul.23976

12. Dedov I.I., Tyul’pakov A.N., Chekhonin V.P., Baklaushev V.P., Archakov A.I., Moshkovsky S.A. Personalized medicine: State-of-the-art and prospects. Vestnik RAMN. 2012; 67 (12): 4–12. DOI: https://doi.org/10.15690/vramn.v67i12.474 (in Russian)

13. Cazzola M., Rogliani P., Calzetta L., Matera M.G. Pharmacogenomic response of inhaled corticosteroids for the treatment of asthma: considerations for therapy. Pharmgenomics Pers. Med. 2020; 13: 261–71.

14. Filina Yu.V., Gabdulkhakova A.G., Arleevskaya M.I. The methods of analysis of DNA methylation. Klinicheskaya laboratornaya diagnostika. 2012; 8: 15–8. (in Russian)

15. Bibikova M., Le J., Barnes B., Saedinia-Melnyk S., Zhou L., Shen R., Gunderson K.L. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics. 2009; 1 (1): 177–200. DOI: https://doi.org/10.2217/epi.09.14

16. Šestáková Š., Šálek C., Remešová H. DNA methylation validation methods: a coherent review with practical comparison. Biol. Proced. Online. 2019; 21 (1): 1–11. DOI: https://doi.org/10.1186/s12575-019-0107-z

17. Skorodumova L.O., Babalyan K.A., Sultanov R., Vasil’ev A.O., Govorov A.V., Pushkar’ D.Yu., Prilepskaya E.A., Danilenko S.A., Generozov E.V., Larin A.K., Kostryukova E.S., Sharova E.I. GSTP1, APC and RASSF1 gene methylation in prostate cancer samples: comparative analysis of MS-HRM method and Infinium Human Methylation450 BeadChip beadchiparray diagnostic value. Biomeditsinskaya khimiya. 2016; 62 (6): 708–14. (in Russian)

18. Reese S.E., Xu C.J., den Dekker H.T., Lee M.K., Sikdar S., Ruiz- Arenas C., Merid S.K., Rezwan F.I., Page C.M., Ullemar V., Melton P.E., Oh S.S., Yang I.V., Burrows K., Soderhall C., Jima D.D., Gao L., Arathimos R., Kupers L.K., Wielscher M., Rzehak P., Lahti J., Laprise C., Madore A.M., Ward J., Bennett B.D., Wang T., Bell D.A., Vonk J.M., Haberg S.E., Zhao S., Karlsson R., Hollams E., Hu D., Richards A.J., Bergstrom A., Sharp G.C., Felix J.F., Bustamante M., Gruzieva O., Maguire R.L., Gilliland F., Baiz N., Nohr E.A., Corpeleijn E., Sebert S., Karmaus W., Grote V., Kajantie E., Magnus M.C., Ortqvist A.K., Eng C., Liu A.H., Kull I., VWV J., Sunyer J., Kere J., Hoyo C., Annesi-Maesano I., Arshad S.H., Koletzko B., Brunekreef B., Binder E.B., Raikkonen K., Reischl E., Holloway J.W., Jarvelin M.R., Snieder H., Kazmi N., Breton C.V., Murphy S.K., Pershagen G., Anto J.M., Relton C.L., Schwartz D.A., Burchard E.G., Huang R.C., Nystad W., Almqvist C., Henderson A.J., Melen E., Duijts L., Koppelman G.H., London S.J. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J. Allergy Clin. Immunol. 2019; 143 (6): 2062–74. DOI: https://doi.org/10.1016j.jaci.2018.11.043

19. Arathimos R., Suderman M., Sharp G.C., Burrows K., Granell R., Tilling K., Gaunt T.R., Henderson J., Ring S., Richmond R.C., Relton C.L. Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin. Epigenetics. 2017; 9 (1): 1–16. DOI: https://doi.org/10.1186/s13148-017-0414-7

20. Yang I.V., Pedersen B.S., Liu A., O’Connor G.T., Teach S.J., Kattan M., Misiak R.T., Gruchalla R., Steinbach S.F., Szefler S.J., Gill M.A., Calatroni A., David G., Hennessy C.E., Davidson E.J., Zhang W., Gergen P., Togias A., Busse W.W., Schwartz D.A. DNA methylation and childhood asthma in the inner city. J. Allergy Clin. Immunol. 2015; 136 (1): 69–80. DOI: https://doi.org/10.1016/j.jaci.2015.01.025

21. Peng C., Cardenas A., Rifas-Shiman S.L., Hivert M.F., Gold D.R., Platts-Mills T.A., Lin X., Oken E., Avila L., Celedon J.C., Weiss S.T., Baccarelli A.A., Litonjua A.A., DeMeo D.L. Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J. Allergy Clin. Immunol. 2019; 143 (6): 2263–70. DOI: https://doi.org/10.1016/j.jaci.2019.01.034

22. Janjanam V.D., Mukherjee N., Lockett G.A., Rezwan F.I., Kurukulaaratchy R., Mitchell F., Zhang H., Arshad H., Holloway J.W., Karmaus W. Tetanus vaccination is associated with differential DNA-methylation: Reduces the risk of asthma in adolescence. Vaccine. 2016; 34 (51): 6493–501. DOI: https://doi.org/10.1016/j.vaccine.2016.10.068

23. Guerra S., Melen E., Sunyer J., Xu C.J., Lavi I., Benet M., Bustamante M., Carsin A.E., Dobano C., Guxens M., Tischer C., Vrijheid M., Kull I., Bergstrom A., Kumar A., Soderhall C., Gehring U., Dijkstra D.J., van der Vlies P., Wickman M., Bousquet J., Postma D.S., Anto J.M., Koppelman G.H. Genetic and epigenetic regulation of YKL-40 in childhood. J. Allergy Clin. Immunol. 2018; 141 (3): 1105–14. DOI: https://doi.org/10.1016/j.jaci.2017.06.030

24. Nicodemus-Johnson J., Myers R.A., Sakabe N.J., Sobreira D.R., Hogarth D.K., Naureckas E.T., Sperling A.I., Solway J., White S.R., Nobrega M.A., Nicolae D.L., Gilad Y., Ober C. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight. 2016; 1 (20): 1–15. DOI: https://doi.org/10.1172/jci.insight.90151

25. Perry M.M., Lavender P., Kuo C.S., Galea F., Michaeloudes C., Flanagan J.M., Fan Chung K., Adcock I.M. DNA methylation modules in airway smooth muscle are associated with asthma severity. Eur. Respir. J. 2018; 51 (4). DOI: https://doi.org/10.1183/13993003. 01068-2017

26. Zhang H., Kaushal A., Merid S.K., Melen E., Pershagen G., Rezwan F.I., Han L., Ewart S., Arshad S.H., Karmaus W., Holloway J.W. DNA methylation and allergic sensitizations: a genome-scale longitudinal study during adolescence. Allergy. 2019; 74 (6): 1166–75. DOI: https://doi.org/10.1111/all.13746

27. DeVries A., Wlasiuk G., Miller S.J., Bosco A., Stern D.A., Lohman I.C., Rothers J., Jones A.C., Nicodemus-Johnson J., Vasquez M.M., Curtin J.A., Simpson A., Custovic A., Jackson D.J., Gern J.E., Lemanske R.F. Jr, Guerra S., Wright A.L., Ober C., Halonen M., Vercelli D. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J. Allergy Clin. Immunol. 2017; 140 (2): 534–42. DOI: https://doi.org/10.1016/j.jaci.2016.10.041

28. Cardenas A., Sordillo J.E., Rifas-Shiman S.L., Chung W., Liang L., Coull B.A., Hivert M.F., Lai P.S., Forno E., Celedon J.C., Litonjua A.A., Brennan K.J., DeMeo D.L., Baccarelli A.A., Oken E., Gold D.R. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat. Commun. 2019; 10 (1): 1–10. DOI: https://doi.org/10.1038/s41467-019-11058-3

29. Forno E., Wang T., Qi C., Yan Q., Xu C.J., Boutaoui N., Han Y.Y., Weeks D.E., Jiang Y., Rosser F., Vonk J.M., Brouwer S., Acosta-Perez E., Colon-Semidey A., Alvarez M., Canino G., Koppelman G.H., Chen W., Celedon J.C. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. Lancet Respir. Med. 2019; 7 (4): 336–46. DOI: https://doi.org/10.1016/S2213-2600(18)30466-1

30. Yang I.V., Pedersen B.S., Liu A.H., O’Connor G.T., Pillai D., Kattan M., Misiak R.T., Gruchalla R., Szefler S.J., Khurana Hershey G.K., Kercsmar C., Richards A., Stevens A.D., Kolakowski C.A., Makhija M., Sorkness C.A., Krouse R.Z., Visness C., Davidson E.J., Hennessy C.E., Martin R.J., Togias A., Busse W.W., Schwartz D.A. The nasal methylome and childhood atopic asthma. J. Allergy Clin. Immunol. 2017; 139 (5): 1478–88. DOI: https://doi.org/10.1016/j.jaci.2016.07.036.

31. Barton S.J., Ngo S., Costello P., Garratt E., El-Heis S., Antoun E., Clarke-Harris R., Murray R., Bhatt T., Burdge G., Cooper C., Inskip H., van der Beek E.M., Sheppard A., Godfrey K.M., Lillycrop K.A.; EpiGen Consortium. DNA methylation of Th2 lineage determination genes at birth is associated with allergic outcomes in childhood. Clin. Exp. Allergy. 2017; 47 (12): 1599–608. DOI: https://doi.org/10.1111/cea.12988

32. Bystritskaya E.P., Gankovskaya L.V., Namazova-Baranova L.S., Bragvadze B.G., Gankovsky V.A., Svitich O.A. Epigenetics of innate immune receptors and their role in bronchial asthma. Allergologiya i immunologiya. 2018; 19 (2): 79–82. (in Russian)

33. Bystritskaya E.P., Svitich O.A. Methylation of TLR2 and TLR4 in epithelial cells of the upper respiratory tract. In: Implementetion of the Results of Innovative Developments: Problems and Prospects. Collection of Articles of the International Scientific and Practical Conference. Ufa, 2017: 24–7. (in Russian)

34. Edris A, den Dekker HT, Melen E, Lahousse L. Epigenome-wide association studies in asthma: a systematic review. Clin. Exp. Allergy. 2019; 49 (7): 953–68. DOI: https://doi.org/10.1111/cea.13403

35. Rider C.F., Carlsten C. Air pollution and DNA methylation: Effects of exposure in humans. Clin. Epigenetics. 2019; 11 (1): 1–15. DOI: https://doi.org/10.1186/s13148-019-0713-2

36. Clifford R.L., Jones M.J., MacIsaac J.L., McEwen L.M., Goodman S.J., Mostafavi S., Kobor M.S., Carlsten C. Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation. J. Allergy Clin. Immunol. 2017; 139 (1): 112–21. DOI: https://doi.org/10.1016/j.jaci.2016.03.046

37. Somineni H.K., Zhang X., Biagini Myers J.M., Kovacic M.B., Ulm A., Jurcak N., Ryan P.H., Khurana Hershey G.K., Ji H. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J. Allergy Clin. Immunol. 2016; 137 (3): 797–805. DOI: https://doi.org/10.1016/j.jaci.2015.10.021

38. Burleson J.D., Siniard D., Yadagiri V.K., Chen X., Weirauch M.T., Ruff B.P., Brandt E.B., Hershey G.K.K., Ji H. TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Sci. Rep. 2019; 9 (1): 1–18. DOI: https://doi.org/10.1038/s41598-019-43767-6

39. Nilsson L., Brockow K., Alm J., Cardona V., Caubet J.C., Gomes E., Jenmalm M.C., Lau S., Netterlid E., Schwarze J., Sheikh A., Storsaeter J., Skevaki C., Terreehorst I., Zanoni G. Vaccination and allergy: EAACI position paper, practical aspects. Pediatr. Allergy Immunol. 2017; 28 (7): 628–40. DOI: https://doi.org/10.1111/pai.12762

40. Kere M., Gruzieva O., Ullemar V., Soderhall C., Greco D., Kull I., Bergstrom A., Pershagen G., Almqvist C., Melen E. Effects of inhaled corticosteroids on DNA methylation in peripheral blood cells in children with asthma. Allergy. 2020; 75 (3): 688–91. DOI: https://doi.org/10.1111/all.1404391

41. Wang A.L., Gruzieva O., Qiu W., Kebede Merid S., Celedon J.C., Raby B.A., Soderhall C., DeMeo D.L., Weiss S.T., Melen E., Tantisira K.G. DNA methylation is associated with inhaled corticosteroid response in persistent childhood asthmatics. Clin. Exp. Allergy. 2019; 49 (9): 1225–34. DOI: https://doi.org/10.1111/cea.13447

42. Zhang X., Biagini Myers J.M., Yadagiri V.K., Ulm A., Chen X., Weirauch M.T., Khurana Hershey G.K., Ji H. Nasal DNA methylation differentiates corticosteroid treatment response in pediatric asthma: a pilot study. PLoS One. 2017; 12 (10): 1–19. DOI: https://doi.org/10.1371/journal.pone.0186150

43. Xiao C., Biagini Myers J.M., Ji H., Metz K., Martin L.J., Lindsey M., He H., Powers R., Ulm A., Ruff B., Ericksen M.B., Somineni H.K., Simmons J., Strait R.T., Kercsmar C.M., Khurana Hershey G.K. Vanin-1 expression and methylation discriminate pediatric asthma corticosteroid treatment response. J. Allergy Clin. Immunol. 2015; 136 (4): 923–31. DOI: https://doi.org/10.1016/j.jaci.2015.01.045

44. Lu T.X., Rothenberg M.E. MicroRNA. J. Allergy Clin. Immunol. 2018; 141 (4): 1202–7. DOI: https://doi.org/10.1016/j.jaci.2017.08.034

45. Solberg O.D., Ostrin E.J., Love M.I., Peng J.C., Bhakta N.R., Hou L., Nguyen C., Solon M., Nguyen C., Barczak A.J., Zlock L.T., Blagev D.P., Finkbeiner W.E., Ansel K.M., Arron J.R., Erle D.J., Woodruff P.G. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med. 2012; 186 (10): 965–74. DOI: https://doi.org/10.1164/rccm.201201-0027OC

46. Elbehidy R.M., Youssef D.M., El-Shal A.S., Shalaby S.M., Sherbiny H.S., Sherief L.M., Akeel N.E. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol. Immunol. 2016; 71: 107–14. DOI: https://doi.org/10.1016/j.molimm.2015.12.015

47. Davis J.S., Sun M., Kho A.T., Moore K.G., Sylvia J.M., Weiss S.T., Lu Q., Tantisira K.G. Circulating microRNAs and association with methacholine PC20 in the Childhood Asthma Management Program (CAMP) cohort. PLoS One. 2017; 12 (7): 1–13. DOI: https://doi.org/10.1371/journal.pone.0180329

48. Kobayashi Y., Bossley C., Gupta A., Akashi K., Tsartsali L., Mercado N., Barnes P.J., Bush A., Ito K. Passive smoking impairs histone deacetylase-2 in children with severe asthma. Chest. 2014; 145 (2): 305–12. DOI: 10.1378/chest.13-0835

49. Yu Q., Yu X., Zhao W., Zhu M., Wang Z., Zhang J., Huang M., Zeng X. Inhibition of H3K27me3 demethylases attenuates asthma by reversing the shift in airway smooth muscle phenotype. Clin. Exp. Allergy. 2018; 48 (11): 1439–52. DOI: https://doi.org/10.1111/cea.13244

50. Cheng Q., Shang Y., Huang W., Zhang Q., Li X., Zhou Q. p300 mediates the histone acetylation of ORMDL3 to affect airway inflammation and remodeling in asthma. Int. Immunopharmacol. 2019; 76. DOI: https://doi.org/10.1016/j.intimp.2019.105885

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»