A comparative characterization of macrophages tolerant to NOD1 and TLR4 receptor agonists

Abstract

Introduction. Innate immune cells activated through a pattern recognition receptor develop a transient state of tolerance, i.e. lack of pro-inflammatory cytokine production upon repeated stimulation of the same receptor. The phenomenon of tolerance can be used to enhance resistance against pathogens. However, data about mechanisms of tolerance are contradictory.

Aim of the study - to compare transcriptomic and metabolic characteristics of human macrophages tolerant to NOD1 and TLR4 receptor agonists upon restimulation with the same agonist and cross-stimulation.

Material and methods. Macrophages were obtained by culturing blood monocytes from healthy donors with granulocyte-macrophage colony-stimulating factor. Macrophages were stimulated for 24 h by a NOD1 or a TLR4 agonist to induce tolerance, whereafter restimulated with the same or the other agonist. Expression of 17 immune-response-related genes was assessed by reverse-transcription real-time PCR, TNF production by ELISA, intensity of glycolysis by real-time monitoring of extracellular medium acidification rate.

Results. Macrophages tolerant to a NOD1 agonist are characterized by a more complete inhibition of the transcriptional response to restimulation with the same agonist, as compared to LPS-tolerated macrophages restimulated with LPS. We did not observe significant cross-tolerizing effects of NOD1 and TLR4 agonists on gene expression. We also show that in macrophages tolerant to NOD1 or TLR4 agonists, there is a complete inhibition of activation-induced enhancement of glycolysis upon restimulation with the same agonist, and partial inhibition upon cross-stimulation.

Conclusion. These data are discussed in light of main theories of immune tolerance (receptor-based, epigenetic).

Keywords:innate immune response; immune tolerance; macrophages; lipopolysaccharide; TLR4; muramyl peptides; NOD1; cytokines

For citation: Nikolaeva A.M., Maksimchik P.V., Pashenkov M.V. A comparative characterization of macrophages tolerant to NOD1 and TLR4 receptor agonists. Immunologiya. 2021, 42 (2): 102-11. DOI: https://doi.org/10.33029/0206-4952-2021-42-2-102-111 (in Russian)

Funding. The work was supported by the Russian Foundation for Basic Research grant 19-015-00256.

Conflict of interests. The authors declare no conflict of interests.

References

1. Beeson P.B., Roberts E. Tolerance to bacterial pyrogens: I. factors influencing its development. J. Exp. Med. 1947; 86 (1): 29–38.

2. Seeley J.J., Ghosh S. Molecular mechanisms of innate memory and tolerance to LPS. J. Leukoc. Biol. 2017; 101 (1): 107–19.

3. Bagchi A., Herrup E.A., Warren H.S., Trigilio J., Shin H.-S., Valentine C., et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J. Immunol. 2007; 178 (2): 1164–71.

4. Lee K.H., Biswas A., Liu Y.J., Kobayashi K.S. Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components. J. Biol. Chem. 2012; 287 (47): 39 800–11.

5. Kim Y.G., Park J.H., Shaw M.H., Franchi L., Inohara N., Núñez G. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity. 2008; 28 (2): 246–57.

6. Lehner M.D., Ittner J., Bundschuh D.S., Van Rooijen N., Wendel A., Hartung T. Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica serovar typhimurium infection despite attenuated cytokine response. Infect. Immun. 2001; 69 (1): 463–71.

7. Cavaillon J.M., Adrie C., Fitting C., Adib-Conquy M. Endotoxin tolerance: Is there a clinical relevance? J. Endotoxin Res. 2003; 9 (2): 101–7.

8. Pashenkov M.V., Popilyuk S.F., Alkhazova B.I., L’vov V.L., Fedenko E.S., Khaitov R.M., et al. Immunobiological properties of muropeptide fragments of peptidoglycan of Gram-negative bacteria. Immunologiya. 2010; 31 (3): 119–25. (in Russian)

9. Foster S.L., Hargreaves D.C., Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007; 447 (7147): 972–8.

10. Pinegin B.V., Pashenkov M.V., Pinegin V.B., Khaitov R.M. Mucosal epithelial cells and novel approaches to immunoprophylaxy and immunotherapy of infectious diseases. Immunologiya. 2020; 41 (6): 12–26. (in Russain)

11. Seeley J.J., Ghosh S. Molecular mechanisms of innate memory and tolerance to LPS. J. Leukoc. Biol. 2017; 101 (1): 107–19.

12. Dagil Y.A., Arbatsky N.P., Alkhazova B.I., L’vov V.L., Mazurov D.V., Pashenkov M.V. The dual NOD1/NOD2 agonism of muropeptides containing a meso-diaminopimelic acid residue. PLoS One. 2016; 11 (8): e0160784. DOI: https://doi.org/10.1371/journal.pone.0160784

13. Girardin S.E., Boneca I.G., Viala J., Chamaillard M., Labigne A., Thomas G., et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003; 278 (11): 8869–72.

14. Girardin S.E., Travassos L.H., Hervé M., Blanot D., Boneca I.G., Philpott D.J., et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 2003; 278 (43): 41 702–8.

15. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998; 282 (5396): 2085–8.

16. Park J.-H., Kim Y.-G., McDonald C., Kanneganti T.-D., Hasegawa M., Body-Malapel M., et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 2007; 178 (4): 2380–6.

17. Boyle J.P., Parkhouse R., Monie T.P. Insights into the molecular basis of the NOD2 signalling pathway. Open Biol. 2014; 4 (12): e140178. DOI: https://doi.org/10.1098/rsob.140178

18. Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003; 301 (5633): 640–3.

19. Kawai T., Adachi O., Ogawa T., Takeda K., Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 1999; 11 (1): 115–22.

20. Abbott D.W., Yang Y., Hutti J.E., Madhavarapu S., Kelliher M.A., Cantley L.C. Coordinated regulation of Toll-like receptor and NOD2 dignaling by K63-linked polyubiquitin chains. Mol. Cell. Biol. 2007; 27 (17): 6012–25.

21. Windheim M., Lang C., Peggie M., Plater L.A., Cohen P. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem. J. 2007; 404 (2): 179–90.

22. Meshcheryakova E., Guryanova S., Makarov E., Alekseeva L., Andronova T., Ivanov V. Prevention of experimental septic shock by pretreatment of mice with muramyl peptides. Int. Immunopharmacol. 2001; 1 (9–10): 1857–65.

23. Shikama Y., Kuroishi T., Nagai Y., Iwakura Y., Shimauchi H., Takada H., et al. Muramyldipeptide augments the actions of lipopolysaccharide in mice by stimulating macrophages to produce pro-IL-1β and by down-regulation of the suppressor of cytokine signaling 1 (SOCS1). Innate Immun. 2011; 17 (1): 3–15.

24. Hiemstra I.H., Bouma G., Geerts D., Kraal G., de Haan J.M.M. Nod2 improves barrier function of intestinal epithelial cells via enhancement of TLR responses. Mol. Immunol. 2012; 52 (3–4): 264–72.

25. Murch O., Abdelrahman M., Kapoor A., Thiemermann C. Muramyl dipeptide enhances the response to endotoxin to cause multiple organ injury in the anesthetized rat. Shock. 2008; 29 (3): 388–94.

26. Watanabe T., Asano N., Murray P.J., Ozato K., Tailor P., Fuss I.J., et al. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J. Clin. Invest. 2008; 118 (2): 545–59.

27. Kullberg B.J., Ferwerda G., De Jong D.J., Drenth J.P.H., Joosten L.A.B., Van Der Meer J.W.M., et al. Crohn’s disease patients homozygous for the 3020insC NOD2 mutation have a defective NOD2/TLR4 cross-tolerance to intestinal stimuli. Immunology. 2008; 123 (4): 600–5.

28. Hedl M., Li J., Cho J.H., Abraham C. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl Acad. Sci. USA. 2007; 104 (49): 19 440–5.

29. Dagil Y.A., Sharova V.S., Pinegin B.V., Pashenkov M.V. A cell-based test system for the assessment of pharmacokinetics of NOD1 and NOD2 receptor agonists. Int. Immunopharmacol. 2018; 63: 94–100. DOI: https://doi.org/10.1016/j.intimp.2018.07.037

30. Pashenkov M.V., Balyasova L.S., Dagil Y.A., Pinegin B.V. The role of the p38-MNK-eIF4E signaling axis in TNF production downstream of the NOD1 receptor. J. Immunol. 2017; 198 (4): 1638–48. DOI: https://doi.org/10.4049/jimmunol.1600467.

31. Pashenkov M.V., Alkhazova B.I., L’vov V.L., Pinegin B.V. Induction of tolerance of human macrophages to lipopolysaccharide and muramyl peptides from gram-negative bacteria. Rossiyskiy immunologicheskiy zhurnal. 2012; 6 (3): 246–52. (in Russian)

32. Mehmeti M., Bergenfelz C., Källberg E., Millrud C.R., Björk P., Ivars F., et al. Wnt5a is a TLR2/4-ligand that induces tolerance in human myeloid cells. Commun. Biol. 2019; 2: 176. DOI: https://doi.org/10.1038/s42003-019-0432-4

33. Murugina N.E., Budikhina A.S., Dagil Y.A., Maximchik P.V., Balyasova L.S., Murugin V.V., et al. Glycolytic reprogramming of macrophages activated by NOD1 and TLR4 agonists: No association with proinflammatory cytokine production in normoxia. J. Biol. Chem. 2020; 295 (10): 3099–114.

34. Tan Y., Kagan J.C. Innate immune signaling organelles display natural and programmable signaling flexibility. Cell. 2019; 177 (2): 384–98.e11.

35. Clevers H., Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012; 149 (6): 1192–205.

36. Gordon M.D., Nusse R. Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 2006; 281 (32): 22 429–33.

37. Bergenfelz C., Medrek C., Ekström E., Jirström K., Janols H., Wullt M., et al. Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. J. Immunol. 2012; 188 (11): 5448–58.

38. Dong S., Wu C., Hu J., Wang Q., Chen S., Wang Z., et al. Wnt5a promotes cytokines production and cell proliferation in human hepatic stellate cells independent of canonical Wnt pathway. Clin. Lab. 2015; 61 (5–6): 537–47.

39. John S., Weiss J.N., Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One. 2011; 6 (3): e17674. DOI: https://doi.org/10.1371/journal.pone.0017674

40. Everts B., Amiel E., Huang S.C.C., Smith A.M., Chang C.H., Lam W.Y., et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 2014; 15 (4): 323–32.

41. Miyamoto S., Murphy A.N., Brown J.H. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2008; 15 (3): 521–9.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»