Cytokine storm: causes and consequences

Abstract

Cytokine storm (CS) is an immunopathological reaction of the human body, characterized by hypercytokinemia and the development of systemic life-threatening conditions. Having various names - CS syndrome, cytokine release syndrome, systemic inflammatory response syndrome, hypercytokinemia, macrophage activation syndrome - CS determines the leading contribution of an excessive amount of cytokines - tumor necrosis factor α, interferon-γ, interleukin(IL)-1β, IL-6 et al. - in severe clinical syndromes in infectious, oncological, autoimmune and other human diseases. The review indicated inducers of CS, the role of the endothelium of blood vessels as a powerful source of cytokines that expands the pathogenic effect of focal of inflammation on the human body. Clinical syndromes developed as a consequence of systemic exposure to excessive amount of proinflammatory cytokines and include acute respiratory distress syndrome, multiple organ dysfunction syndrome, disseminated intravascular coagulation syndrome, immune effector cell-associated neurotoxicity syndrome are reviewed in the article. The tactics of CS treatment in dependence on the severity of patient’ clinical state is described.

Keywords:cytokine storm; inducers; pathogenesis; treatment

For citation: Potapnev M.P Cytokine storm. Causes and consequences. Immunologiya. 2021; 42 (2): 175-88. DOI: https://doi.org/10.33029/0206-4952-2021-42-2-175-188 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. Author declares no conflict of interests.

References

1. Behrens E.M., Koretzky G.A. Cytokine storm syndrome. Looking toward the precision medicine era. Arthritis Rheumatol. 2017; 69 (6): 1135–43. DOI: https://doi.org/10.1002/art.40071

2. Minoia F., Davi S., Alongi A., Ravelli A. Criteria for cytokine storm syndromes. In: R.G. Cron, E.M. Behrens (eds). Cytokine Storm Syndrome. Cham: Springer, 2019: 61–79. DOI: https://doi.org/10.1007/978-3-030-22094-5_5

3. Chatenoud L., Ferran C., Reuter A., Legendre C., Gevaert Y., Kreis H., Frachimont P., Bach J.-F. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-α. N. Engl. J. Med. 1989; 320 (21): 1420–1. DOI: https://doi.org/10.1056/nejm198905253202117

4. Antin J.H., Ferrara J.L.M. Cytokine dysregulation and acute graft-versus-host disease. Blood. 1992; 80 (12): 2964–8. DOI: https://doi.org/10.1182/blood.V80.12.2964.2964

5. Abhyankar S., Gilliland D.G., Ferrara J.L.M. Interleukin-1 is a critical effector molecule during cytokine dysregulation in graft versus host disease to minor histocompatibility antigens. Transplantation. 1993; 56: 1518–23. DOI: https://doi.org/10.1097/00007890-199312000-00045

6. Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A., Schein R.M., Sibbald W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992; 101: 1644–55. DOI: https://doi.org/10.1378/chest.101.6.1644

7. Casey L.C., Balk R.A., Bone R.C. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann. Intern. Med. 1993; 119 (8): 771–8. DOI: https://doi.org/10.7326/0003-4819-119-8-199310150-00001

8. Tracey K.J., Fong Y., Heese D.G., Manogue K.R., Lee A.T., Kuo G.C., Lowry S.F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature.1987; 330 (6149): 662–4. DOI: https://doi.org/10.1038/330662a0

9. Rouse B.T. Virus-induced immunopathology. Adv. Virus Res. 1996; 47: 353–76. DOI: https://doi.org/10.1016/s0065-3527(08)60739-3

10. Tonini G., Santini D., Vincenzi B., Borzomati D., Dicuonzo G., La Cesa A., Onori N., Coppola R. Oxaliplatin may induce cytokine-release syndrome in colorectal cancer patients. J. Biol. Regul. Homeost. Agents. 2002; 16: 106–9. PMID: 12144121.

11. Wing M.G., Moreau T., Greenwood J., Smith R.M., Hale G., Isaacs J., Waldman H., Lachmann P.J., Compston A. Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: Involvement of CD16 (FcγRIII) and CD11a/CD18 (LFA-1) on NK cells. J. Clin. Invest. 1996; 98 (12): 2819–26. PMID: 8981930.

12. Winkler U., Jensen M., Manzke O., Schulz H., Diehl V., Engert A. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood. 1999; 94 (7): 2217–24. PMID: 10498591.

13. Porter D.L., Levine B.L., Kalos M., Bagg A., June C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 2011; 365 (8): 725–33. DOI: https://doi.org/10.1056/nejmoa1103849

14. Henter J.-I., Elinder G., Soder O., Hansson M., Andersson B., Andersson U. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood. 1991; 78 (11): 2918–22. PMID: 1954380.

15. Sawhney S., Woo P., Murray K.J. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch. Dis. Child. 2001; 85: 421–6. DOI: https://doi.org/10.1136/adc.85.5.421

16. Blackwell T.S., Christman J.W. Sepsis and cytokines: current status. Br. J. Anaesth, 1996; 77: 110–7. DOI: https://doi.org/10.1093/bja/77.1.110

17. Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R., Katze M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012; 76 (1): 16–32. DOI: https://doi.org/10.1128/MMBR.05015-11

18. Simbirtsev A.S. Сytokines in the pathogenesis of infectious and noninfectious human diseases. Meditsinskiy akademicheskiy zhurnal. 2013; 3: 18–41. DOI: https://doi.org/10.17816/MAJ13318-41 (in Russian)

19. Dinarello C.A. Proinflammatory cytokines. Chest. 2000; 118 (2): 503–8. DOI: https://doi.org/10.1378/chest.118.2.503

20. Panelli M.C., White R., Foster M., Martin B., Wang E., Smith K., Marincola F.M. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J. Transl. Med. 2004; 2: 17. DOI: https://doi.org/10.1186/1479-5876-2-17

21. McIlwain R.B., Timpa J.G., Kurundkar A.R., Holt D.W., Kelly D.R., Hartman Y.E., Neel M.L., Karnatak R.K., Schelonka R.L., Anantharamaiah G.M., Killingsworth C.R., Maheshwari A. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab. Invest. 2010; 90 (1): 128–39. DOI: https://doi.org/10.1038/labinvest.2009.119

22. Burger D., Dayer J.-M. Inhibitory cytokines and cytokine inhibitors. Neurology. 1995; 45 (suppl 6): S39–43. DOI: https://doi.org/10.1212/wnl.45.6_suppl_6.s39

23. Carcillo J.A., Shakoory B. Cytokine storm and sepsis-induced multiple organ dysfunction syndrome. In: R.G. Cron, E.M. Behrens (eds). Cytokine Storm Syndrome. Cham: Springer, 2019: 451–64. DOI: https://doi.org/10.1007/978-3-030-22094-5_27

24. Teijaro J.R., Walsh K.B., Cahalan S., Fremgen D.M., Roberts E., Scott F., Martinborough E., Peach R., Oldstone M.B.A., Rosen H. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011; 146: 980–91. DOI: https://doi.org/10.1016/j.cell.2011.08.015

25. Kwok H.-H., Poon P.-Y., Fok S.-P., Yue P.Y.-K., Mak N.-K., Chan M.C.-W., Peiris J.S.M., Wong R.N.-S. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells. Sci. Rep. 2016; 6: 18941. DOI: https://doi.org/10.1038/srep18941

26. Karakike E., Giamarellos-Bourboulis E.J. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front. Immunol. 2019; 10: 55. DOI: https://doi.org/10.3389/fimmun.2019.00055

27. Teuwen L.-A., Geldhof V., Pasut A., Carmeliet P. COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 2020; 20: 389–91. DOI: https://doi.org/10.1038/s41577-020-0356-8

28. Ince C., Mayeux P.R., Nguyen T., Gomez H., Kellum J.A., Ospina-Tascon G.A., Hernandez G., Murray P., De Backer D.; on behalf of the ADQI XIV Workgroup. The endothelium in sepsis. Shock. 2016; 45 (3): 259–70. DOI: https://doi.org/10.1097/0000000000000473

29. Morris G., Bortolasci C.C., Puri B.K., Olive L., Marx W., L., O’Neil A., Athan E., Carvalho A., Maes M., Walder K., Berk M. Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci. 2021; 264: 118617. DOI: https://doi.org/10.1016/j.lfs.2020.118617

30. Jayarangaiah F., Kariyanna P.T., Chen X., Jayarangaiah A., Kumar A. COVID-19-associated coagulopathy: an exacerbated immunothrombosis response. Clin. Appl. Thromb. Hemost. 2020; 26: 1–11. DOI: https://doi.org/10.1177/1076029620943293

31. Tay M.Z., Poh C.M., Renia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 2020; 20: 363–74. DOI: https://doi.org/10.1038/s41577-020-0311-8

32. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017: 39; 529–39. DOI: https://doi.org/10.1007/s00281-017-0629-x

33. Van den Berg D.F., te Velde A.A. Severe COVID-19: NLRP3 inflammasome dysregulated. Front. Immunol. 2020; 11: 1580. DOI: https://doi.org/10.3389/fimmu.2020.01580

34. Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int. Immunopharmacol. 2020; 89: 107087. DOI: https://doi.org/10.1016/j.intimp.2020.107087

35. Fettucciari K., Fruganti A., Marchegiani A., Brancorsini S., Marconi P., Bassotti G. Proinflammatory cytokines: possible accomplices for the systemic effects of Clostridioides difficile toxin B. J. Inflamm. Res. 2021; 14: 57–62. DOI: https://doi.org/10.2147/JIR.S287096

36. Behrens E.M. Cytokines in cytokine storm syndrome. In: R.G. Cron, E.M. Behrens (eds). Cham: Springer, 2019: 197–207. DOI: https://doi.org/10.1007/978-3-030-22094-5_12

37. Bonaventura A., Vecchie A., Wang T.S., Lee E., Cremer P.C., Carey B., Rajendram P., Hudock K.M., Korbee L., Van Tassell B.W., Dagna L., Abbate A. Targeting GM-CSF in COVID-19 pneumonia: rationale and strategies. Front. Immunol. 2020; 11: 1625. DOI: https://doi.org/10.3389/fimmun.2020.01625

38. Xu X.-J., Tang Y.-M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett. 2014; 343 (2): 172–8. DOI: https://doi.org/10.1016/j.canlet.2013.10.004

39. Panoskaltsis N. Are all cytokine storms the same? Cancer Immunol. Immunother. 2021; 70 (1). DOI: https://doi.org/10.1007/s00262-020-02822-2

40. Chernykh E.R., Leplina O.Yu., Tikhonova M.A., Pal’tsev A.V., Ostanin A.A. Cytokine balance in systemic inflammation: a new target for immunotherapy of sepsis. Meditsinskaya immunologiya. 3 (3): 415–29. (in Russian)

41. Kamali A.N., Noorbakhsh S.M., Hamedifar H., Jadidi-Niaragh F., Yazdani R., Bautista J.M., Azizi G. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol. Immunol. 2019; 105: 107–15. DOI: https://doi.org/10.1016/j.molimm.2018.11.015

42. Oppenheim J.J. Cytokines, their receptors and signals. In. The Autoimmune Diseases. 6th ed. London: Elsevier, 2020: 275–89. DOI: https://doi.org/10.1016/B978-0-12-812102-3.00015-4

43. Lin S.-H., Zhao Y.-S., Zhou D.-X., Zhou F.-C., Xu F. Coronavirus disease 2019 (COVID-19): cytokine storms, hyper-inflammatory phenotypes, and acute respiratory distress syndrome. Genes Dis. 2020; 7 (4): 520–7. DOI: https://doi.org/10.1016/j.gendis.2020.06.009

44. Song P., Li W., Xie J., Hou Y., You C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta. 2020; 509: 280–7. DOI: https://doi.org/10.1016/j.cca.2020.06.017

45. Potapnev M.P. Apoptosis in the immune system cells and its regulation by cytokines. Immunologiya. 2002; 23 (4): 237–43 (in Russian)

46. Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A., Blair C., Weber A., Barnes B.J., Egeblad M., Woods R.J., Kanthi Y., Knight J.S. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5 (11): e138999. DOI: https://doi.org/10.1172/jci.insight.138999

47. Felsentein S., Herbert J.A., McNamara P.S., Hedrich C.M. COVID-19: immunology and treatment options. Clin. Immunol. 2020; 215: 108448. DOI: https://doi.org/10.1016/j.clim.2020.108448

48. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061–9. DOI: https://doi.org/10.1001/jama.2020.1585

49. Huang C., Wang Y., Li X., Ren L., Zhao L., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10 223): 497–506. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

50. Weaver L.K., Behrens E.M. Weathering the storm: improving therapeutic interventions for cytokine storm syndromes by targeting disease pathogenesis. Curr. Treat. Options Rheumatol. 2017; 3: 33–48. DOI: https://doi.org/10.1007/s40674-017-0059-x

51. Shimizu M. Clinical features of cytokine storm syndrome. In: R.G. Cron, E.M. Behrens (eds). Cytokine Storm Syndrome. Cham: Springer, 2019: 31–41. DOI: https://doi.org/10.1007/978-3-030-22094-5_3

52. Rosado F.G., Gopal P. Laboratory features and pathology of the cytokine storm syndromes. In: R.G. Cron, E.M. Behrens (eds). Cytokine Storm Syndrome. Cham: Springer, 2019: 43–59. DOI: https://doi.org/10.1007/978-3-030-22094-5_4

53. Schneider R., Canny S.P., Mellins E.D. Cytokine storm syndrome associated with systemic juvenile idiopathic arthritis. In: R.G. Cron, E.M. Behrens (eds). Cytokine Storm Syndrome. Cham: Springer, 2019: 349–79. DOI: https://doi.org/10.1007/978-3-030--22094-5_21

54. Yasin S., Solomon K., Canna S.W., Girard-Guyonvarc’h C., Gabay C., Schiffrin E., Sleight A., Grom A.A., Schulert G.S. IL-18 as a therapeutic target in a patient with resistant systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome. Rheumatology. 2020; 59 (2): 442–5. DOI: https://doi.org/10.1093/rheumatology/kez284

55. De Benedetti F., Brogan P., Bracaglia C., Pardeo M., Marucci G., Sacco E., Eleftheriou D., Papadopoulou C., Grom A., Quartier P., Schneider R., Jacqmin P., Frederiksen R., Ballabio M., De Min C. Emapalumab (anti-interferon-gamma monoclonal antibody) in patients with macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (SJIA). Ann. Rheum. Dis. 2020; 79 (suppl 1): 480. DOI: https://doi.org/10.1136/annrheumdis-2020-eular.3169

56. Temporary guidelines of the Ministry of Health of the Russian Federation «Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)» (version 9 of 26.10.2020): 236 p. (in Russian)

57. Bhaskar S., Sinha A., Banach M., Mittoo S., Weissert R., Kass J.S., Rajagopal S., Pai A.R., Kutty S. Cytokine storm in COVID-19 – immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM consortium position paper. Front. Immunol. 2020; 11: 1648. DOI: https://doi.org/10.3389/fimmu.2020.01648

58. Barrett D.M., Teachey D.T., Grupp S.A. Toxicity management for patients receiving novel T-cell engaging therapies. Curr. Opin. Pediatr. 2014; 26: 43–9. DOI: https://doi.org/10.1097/MOP.0000000000000043

59. Hanna R., Dalvi S., Salagean T., Pop I.D., Bordea I.R. Benedicenti S. Understanding COVID-19 pandemic: molecular mechanisms and potential therapeutic strategies. An evident-based review. J. Inflamm. Res. 2021; 14: 13–56. DOI: http://doi.org/10.2147/JIR.S282213

60. Eloseily E.M., Cron R.Q. Bacteria-associated cytokine storm syndrome. In: R.G. Cron, E.M. Behrens (eds). Cytokine Storm Syndrome. Cham: Springer, 2019: 307–17. DOI: https://doi.org/10.1007/978-3-030-22-94-5_18

61. Girija A.S.S., Shankar E.M., Larsson M. Could SARS-CoV-2 induced hyperinflammation magnify the severity of coronavirus disease (CoVID-19) leading to acute respiratory distress syndrome? Front. Immunol. 2020; 11: 1206. DOI: https://doi.org/10.3389/fimmu.2020.01206

62. Zhang B., Zhou X., Qiu Y., Song Y., Feng F., Feng J., Song Q., Jia Q., Wang J. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020; 15 (7): e0235458. DOI: https://doi.org/10.1371/journal.pone.0235458

63. Baklaushev V.P., Kulemzin S.V., Gorchakov A.A., Lesnyak V.N., Yusubalieva G.M., Sotnikova A.G. COVID-19. Aetiology, pathogenesis, diagnosis and treatment. Klinicheskaya praktika. 2020; 11 (1): 7–20. DOI: https://doi.org/10.17816/clinpract26339 (in Russian)

64. Nasonov E.L. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): Focus on interleukin 6. Nauchno-prakticheskaya revmatologiya. 2020; 58 (3): 245–61. DOI: https://doi.org/10.14412/1995-4484-2020-245-261 (in Russian)

65. Beck D.B., Aksentijevich I. Susceptibility to severe COVID-19. Genetic variants and autoantibodies that suppress antiviral immunity and linked to severe COVID-19. Science. 2020; 370 (6515): 404–5. DOI: https://doi.org/10.1126/science.abe7591

66. Leng Z., Zhu R., Hou W., Feng Y., Yang Y., Han Q., Shan G., Meng F., Du D., Wang S., Fan J., Wang W., Deng L., Shi H., Li H., Hu Z., Zhang F., Gao J., Liu H., Li X., Zhao Y., Yin K., He X., Gao Z., Wang Y., Yang B., Jin R., Stambler I., Lim L.W., Su H., Moskalev A., Cano A., Chakrabarti S., Min K.-J., Ellison-Hughes G., Caruso C., Jin K., Zhao R.C. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11 (2): 216–28. DOI: https://doi.org/10.14336/AD.2020.0228

67. Shimabukuro-Vornhagen A., Godel P., Subklewe M., Stemmler H.J., Schloβer H.A., Schlaak M., Kochanek M., Boll B., von Bergwelt-Baildon M.S. Cytokine release syndrome. J. Immunother. Cancer. 2018; 6: 56. DOI: https://doi.org/10.1186/s40425-018-0343-9

68. Kennedy L.B., Salama A.K.S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 2020; 70: 86–104. DOI: https://doi.org/10.3322/caac.21596

69. Gupta K.K., Khan M.A., Singh S.K. Constitutive inflammatory cytokine storm: a major threat to human health. J. Interferon Cytokine Res. 2020; 40 (1): 1–6. DOI: https://doi.org/10.1089/jir.2019.0085

70. Lee D.W., Gardner R., Porter D.L., Louis C.U., Ahmed N., Jensen M., Grupp S.A., Mackall C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014; 124 (2): 188–95. DOI: https://doi.org/10.1182/blood-2014-05-552729

71. Mariotti J., Taurino D., Marino F., Bramanti S., Sarina B., Morabito L., De Philippis C., Di Vito C., Mavilio D., Carlo-Stella C., Porta M.D., Santoro A., Castagna L. Pretransplant active disease status and HLA class II mismatching are associated with increased incidence and severity of cytokine release syndrome after haploidentical transplantation with posttransplant cyclophosphamide. Cancer Med. 2019; 9: 52–61. DOI: https://doi.org/10.1002/cam4.2607

72. Shang Y., Zhou F. Current advances in immunotherapy for acute leukemia: an overview of antibody, chimeric antigen receptor, immune checkpoint, and natural killer. Front. Oncol. 2019; 9: 917 DOI: https://doi.org/10.3389/fonc.2019.00917

73. Gutierrez C., McEvoy C., Munshi L., Stephens R.S., Detsky M.E., Nates J.L., Pastores S.M. Critical care management of toxicities associated with targeted agents and immunotherapies for cancer. Crit. Care Med. 2020; 48 (1): 10–21. DOI: https://doi.org/10.1097/CCM.0000000000004087

74. Ceschi A., Noseda R., Palin K., Verhamme K. Immune checkpoints inhibitor-related cytokine release syndrome: analysis of WHO global pharmacovigilance database. Front. Pharmacol. 2020; 11: 557. DOI: https://doi.org/10.3389/fphar.2020.00557

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»