Possible role of anti-IL17 drugs in the management of COVID-19: our own experience and literature review

Abstract

Coronavirus infection COVID-19 is an acute respiratory viral disease caused by a novel beta-coronavirus SARS-CoV-2. In 81 % of cases, mortality in COVID-19 patients is associated with the development of acute respiratory distress syndrome (ARDS). Another critical challenge associated with COVID-19 is the development of a cytokine storm, which is an uncontrolled release of proinflammatory mediators due to the excessive activation of immune system. Cytokine storm is another cause of high mortality because of COVID-19, as it leads to multiple organ failure, ARDS and disseminated intravascular coagulation (DIC). Thus, the management of cytokine storm and ARDS in COVID-19 patients is an urgent issue for the medical society. Recent research assessed the potential role of interleukin(IL)-17 in the pathogenesis of cytokine storm and ARDS in COVID-19 patients. Some authors also pointed to using anti-IL17 medications in the management of patients with severe COVID-19. The present article gives a literature review on the possible role of IL-17 in COVID-19 pathogenesis and our personal experience of anti-IL17 prescription for patients with severe course of COVID-19.

Keywords:COVID-19; IL-17; acute respiratory distress syndrome; cytokine storm; management; IL-17A inhibitors; secukinumab

For citation: Shatokhina E.A., Polonskaia A.S., Mershina Е.А., Seredenina Е.М., Plisyuk A.G., Georginova О.А., Krasnova T.N., Pavlikova E.P., Orlova Ya.A., Sinitsyn V.E., Kruglova L.S., Kamalov A.A. Possible role of anti-IL17 drugs in the management of COVID-19 - our own experience and literature review. Immunologiya. 2021; 42 (3): 243-53. DOI: https://doi.org/10.33029/0206-4952-2021-42-3-243-253 (in Russian)

Funding. The study was supported by State Task of Lomonosov Moscow State University N 12230п-П8.

Conflict of interests. The authors declare no conflict of interests.

References

1. Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020; 41 (1): 5-18. DOI: https://doi.org/10.33029/0206-4952-2020-41-1-5-18 (in Russian)

2. Pacha O., Sallman M.A., Evans S.E. COVID-19: a case for inhibiting IL-17? Nat. Rev. Immunol. 2020; 20 (6): 345-6. DOI: https://doi.org/10.1038/s41577-020-0328-z

3. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10 223): 497-506. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

4. Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Bruggen M.C., et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020; 75 (7): 1564-81. DOI: https://doi.org/10.1111/all.14364

5. Zumla A., Hui D.S., Azhar E.I., Memish Z.A., Maeurer M. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet. 2020; 395 (10 224): e35-6. DOI: https://doi.org/10.1016/S0140-6736(20)30305-6

6. Peiris J.S., Chu C.M., Cheng VC., Chan K.S., Hung I.F., Poon L.L., et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003; 361 (9371): 1767-72. DOI: https://doi.org/10.1016/s0140-6736(03)13412-5

7. Casillo G.M., Mansour A.A., Raucci F., Saviano A., Mascolo N., Iqbal A.J., et al. Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome? Pharmacol. Res. 2020; 156: 104791. DOI: https://doi.org/10.1016/j.phrs.2020.104791

8. Ceccarelli G., Nardi K., Marchesani F. Letter to the Editor in response to the article «Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome»? Pharmacol. Res. 2020; 158: 104933. DOI: https://doi.org/10.1016/j.phrs.2020.104933

9. Megna M., Napolitano M., Fabbrocini G. May IL-17 have a role in COVID-19 infection? Med. Hypotheses. 2020; 140: 109749. DOI: https://doi.org/10.1016/j.mehy.2020.109749

10. Wiche Salinas T.R., Zheng B., Routy J.P., Ancuta P. Targeting the interleukin-17 pathway to prevent acute respiratory distress syndrome associated with SARS-CoV-2 infection. Respirology. 2020; 25 (8): 797-9. DOI: https://doi.org/10.1111/resp.13875

11. Mendoza V.M.M. Interleukin-17: a potential therapeutic target in COVID-19. J. Infect. 2020; 81 (2): e136-8. DOI: https://doi.org/10.1016/j.jinf.2020.05.072

12. Bulat V, Situm M., Azdajic M.D., Likic R. Potential role of IL-17 blocking agents in the treatment of severe COVID-19? Br. J. Clin. Pharmacol. 2021; 87 (3): 1578-1. DOI: https://doi.org/10.1111/bcp.14437

13. URL: http://www.chictr.org.cn/showprojen.aspx?proj=50251

14. Ma W.T., Yao X.T., Peng Q., Chen D.K. The protective and pathogenic roles of IL-17 in viral infections: friend or foe? Open Biol. 2019; 9 (7): 190109. DOI: https://doi.org/10.1098/rsob.190109

15. Miossec P., Korn T., Kuchroo V.K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 2009; 361 (9): 888-98. DOI: https://doi.org/10.1056/NEJMra0707449

16. McGeachy M.J., Cua D.J., Gaffen S.L. The IL-17 family of cytokines in health and disease. Immunity. 2019; 50 (4): 892-906. DOI: https://doi.org/10.1016/j.immuni.2019.03.021

17. Kogan E.A., BerezovskyY.S., Protsenko D.D., Bagdasaryan T.R., Gretsov E.M., Demura S.A., et al. Pathological anatomy of infection caused by SARS-COV-2. Forensic medicine. 2020; 6 (2): 8-30. DOI: https://doi.org/10.1056/NEJMra0707449 (in Russian)

18. Buttignol M., Pires-Neto R.C., Rossi E., Silva R.C., Albino M.B., Dolhnikoff M., et al. Airway and parenchyma immune cells in influenza A(H1N1)pdm09 viral and non-viral diffuse alveolar damage. Respir. Res. 2017; 18 (1): 147. DOI: https://doi.org/10.1186/s12931-017-0630-x

19. Xie M., Cheng B., Ding Y, Wang C., Chen J. Correlations of IL-17 and NF-kB gene polymorphisms with susceptibility and prognosis in acute respiratory distress syndrome in a Chinese population. Biosci. Rep. 2019; 39 (2): BSR20181987. DOI: https://doi.org/:10.1042/BSR20181987

20. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J., et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10 229): 1033-4. DOI: https://doi.org/10.1016/S0140-6736(20)30628-0

21. Torres Acosta M.A., Singer B.D. Pathogenesis of COVID-19-induced ARDS: implications for an aging population. Eur. Respir. J. 2020; 56 (3): 2002049. DOI: https://doi.org/10.1183/13993003.02049-2020

22. Crowe C.R., Chen K., Pociask D.A., Alcorn J.F., Krivich C., Enelow R.I., et al. Critical role of IL-17RA in immunopathology of influenza infection. J. Immunol. 2009; 183 (8): 5301-10. DOI: https://doi.org/10.4049/jimmunol.0900995

23. Li C., Yang P., Sun Y., Li T., Wang C., Wang Z., et al. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res. 2012; 22 (3): 528-38. DOI: https://doi.org/10.1038/cr.2011.165

24. Mikacenic C., Hansen E.E., Radella F., Gharib S.A., Stapleton R.D., Wurfel M.M. Interleukin-17A is associated with alveolar inflammation and poor outcomes in acute respiratory distress syndrome. Crit. Care Med. 2016; 44 (3): 496-502. DOI: https://doi.org/10.1097/CCM.0000000000001409

25. Yu Z.X., Ji M.S., Yan J., Cai Y., Liu J., Yang H.F., et al. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome. Crit. Care. 2015; 19 (1): 82. Epub 2015 Mar 11. DOI: https://doi.org/10.1186/s13054-015-0811-2

26. Wu D., Yang X.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 2020; 53 (3): 368-70. DOI: https://doi.org/10.1016/j.jmii.2020.03.005

27. Boldyreva M.N. SARS-CoV-2 virus and other epidemic coronaviruses: pathogenetic and genetic factors for the development of infections. Immunologiya. 2019; 41 (3): 197-205. DOI: https://doi.org/10.33029/0206-4952-2020-41-3-197-205 (in Russian)

28. Kostinov M.P. Immunopathogenic properties of SARS-CoV-2 as a basis for the choice of pathogenetic therapy. Immunologiya. 2019; 41 (1): 83-91. DOI: https://doi.org/10.33029/0206-4951-2020-41-1-83-91 (in Russian)

29. Hou W., Jin Y.H., Kang H.S., Kim B.S. Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function. J. Virol. 2014; 88 (15): 8479-89. DOI: https://doi.org/10.1128/JVI.00724-14

30. Raucci F., Mansour A.A., Casillo G.M., Saviano A., Caso F., Scarpa R., et al. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun. Rev. 2020; 19 (7): 102572. DOI: https://doi.org/10.1016/j.autrev.2020.102572

31. Marder W., Khalatbari S., Myles J.D., Hench R., Yalavarthi S., Lustig S., et al. Interleukin 17 as a novel predictor of vascular function in rheumatoid arthritis. Ann. Rheum. Dis. 2011; 70 (9): 1550-5. DOI: https://doi.org/10.1136/ard.2010.148031

32. Maione F., Cicala C., Liverani E., Mascolo N., Perretti M., D’Acquisto F. IL-17A increases ADP-induced platelet aggregation. Biochem. Biophys. Res. Commun. 2011; 408 (4): 658-62. DOI: https://doi.org/10.1016/j.bbrc.2011.04.080

33. Zhang S., Yuan J., Yu M., Fan H., Guo Z.-Q.., Yang R., et al. IL-17A facilitates platelet function through the ERK2 signaling pathway in patients with acute coronary syndrome. PLoS One. 2012; 7 (7): e40641. DOI: https://doi.org/10.1371/journal.pone.0040641

34. Ding P., Zhang S., Yu M., Feng Y, Long Q., Yang H., et al. IL-17A promotes the formation of deep vein thrombosis in a mouse model. Int. Immunopharmacol. 2018; 57: 132-8. DOI: https://doi.org/10.1016/j.intimp.2018.02.006

35. Myers J.M., Cooper L.T., Kem D.C., Stavrakis S., Kosanke S.D., Shevach E.M., et al. Cardiac myosin-TH17 responses promote heart failure in human myocarditis. JCI Insight. 2016; 1 (9): e85851. DOI: https://doi.org/10.1172/jci.insight.85851

36. Gudima G.O., Khaitov R.M., Kudlay D.A., Khaitov M.R. Molecular immunological aspects of diagnostics, prevention and treatment of coronavirus infection. Immunologiya. 2021; 42 (3): 198-210. DOI: https://doi.org/10.33029/0206-4952-2021-42-3-198-210 (in Russian)

37. Mareev V.Y., Orlova Ya.A., Pavlikova E.P., Akopyan Zh.A., Matskeplishvili S.T., Plisyuk A.G., et al. Proactive antiinflammatory and anticoagulant therapy in the treatment of advanced stages of novel coronavirus infection (COVID-19). Case Series and Study Design: COLchicine versus ruxolitinib and secukinumab in Open prospective RandomIzed Trial (COLORIT). Cardiology. 2020; 60 (9): 4-21. DOI: https://doi.org/10.18087/cardio.2020.9.n133 8 (in Russian)

38. Di Lernia V., Bombonato C., Motolese A. CoViD-19 in an elderly patient treated with secukinumab. Dermatol. Ther. 2020; 33 (4): e13580. DOI: https://doi.org/10.1111/dth.13580

39. Queiro Silva R., Armesto S., Gonzalez Vela C., Naharro Fernandez C., Gonzalez-Gay M.A. COVID-19 patients with psoriasis and psoriatic arthritis on biologic immunosuppressant therapy vs apremilast in North Spain. Dermatol. Ther. 2020; 33 (6): e13961. DOI: https://doi.org/10.1111/dth.13961

40. Holcomb Z.E., Santillan M.R., Morss-Walton P.C., Salian P., Her M.J., Giannotti N.M., et al. Risk of COVID-19 in dermatologic patients receiving long-term immunomodulatory therapy. J. Am. Acad. Dermatol. 2020; 83 (4): 1215-8. DOI: https://doi.org/10.1016/jjaad.2020.06.999

41. Balestri R., Rech G., Girardelli C.R. SARS-CoV-2 infection in a psoriatic patient treated with IL-17 inhibitor. J. Eur. Acad. Dermatol. Venereol. 2020; 34 (8): e357-8. DOI: https://doi.org/10.1111/jdv.16571

42. Kruglova L.S., Shatokhina E.A., Polonskaya A.S. Biological drugs prescription issues in terms of the new coronaviral infection COVID-19 pandemic. Literature review and clinical case. Russian Journal of Skin and Venereal Diseases. 2020; 23 (4): 218-26. DOI: https://doi.org/10.17816/dv50896 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»