Interleukin-6 as a possible regulator of intrafollicular Foxp3+ T cells in women undergoing IVF treatmen

Abstract

Regulatory Foxp3+ T cells (Treg) are involved in the induction of tolerance to fetal alloantigens and the formation of physiological immunosuppression during pregnancy. However, the mechanisms affecting their content, especially in the early stages of the reproductive process, remain unclear. This paper is devoted to the study of the relationship between the concentration of IL-6 and regulatory Foxp3+ T cells in the follicular fluid (FF) of women with different parameters of folliculo/oogenesis, blastulation and IVF outcomes. The study included 53 women with infertility undergoing IVF program. Collection of FF samples from dominant follicles was performed using transvaginal ultrasonic aspiration. The concentration of IL-6 in FF was assessed by flow fluorimetry (Bio-Plex Protein Assay System, Bio-Rad, USA). The relative content of CD4+Foxp3+ and CD4-Foxp3+ T cells was assessed by flow cytometry.

The data obtained showed that increased IL-6 content in the FF is registered in women with a high number of follicles, oocytes, poor blastocyst quality and a negative IVF outcome. At the same time, the high content of IL-6 in FF is associated with a low number of intrafollicular CD4-FoxP3+ cells, which inversely correlates with the concentration of IL-6. At the same time, the relationship of IL-6 with the number of CD4+FoxP3+ T cells was not detected. Thus, one of the reasons for the decrease in the number of CD4-FoxP3+ cells that play a positive role in regulating early reproductive processes may be a high concentration of IL-6 in the FF.

Keywords:Foxp3+ T cells; IL-6; follicular fluid; IVF; infertility

Received 01.02.2019. Accepted 16.02.2019.

For citation: Khonina N.A., Andreeva E.A., Tikhonova M.A., Batorov E.V., Ostanin A.A., Pasman N.M., Chernykh E.R. Interleukin-6 as a possible regulator of intrafollicular FoxP3+ T-cells in women undergoing IVF treatmen. Immunologiya. 2019; 40 (2): 30-7. doi: 10.24411/0206-4952-2019-12005. (in Russian)

Acknowledgments. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

References

1. Ryba-Stanislawowska M., Skrzypkowska M., Mysliwska J., Mysliwiec M. The serum IL-6 profile and Treg/Th17 peripheral cell populations in patients with type 1 diabetes. Mediators Inflamm. 2013; 2013: 205284. doi: 10.1155/2013/205284.

2. Korn T., Mitsdoerffer M., Croxford A.L., Awasthi A., et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA. 2008; 105 (47): 18 460-5. doi: 10.1073/pnas.0809850105.

3. Kimura A., Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol. 2010; 40 (7): 1830-5. doi: 10.1002/eji.201040391.

4. Fujimoto M., Nakano M., Terabe F., Kawahata H., et al. The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells. J. Immunol. 2011; 186 (1): 32-40. doi: 10.4049/jimmunol.0903314.

5. Lin G., Wang J., Lao X., Wang J., et al. Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J. Immunother. 2012; 35 (4): 337-43. doi: 10.1097/CJI.0b013e318255ada3.

6. Nakagawa T., Tsuruoka M., Ogura H., Okuyama Y., et al. IL-6 positively regulates Foxp3+CD8+ T cells in vivo. Int. Immunol. 2010; 22 (2): 129-39. doi: 10.1093/intimm/dxp119.

7. Zhu L., Chen H., Liu M., Yuan Y., et al. Treg/Th17 cell imbalance and IL-6 profile in patients with unexplained recurrent spontaneous abortion. Reprod. Sci. 2017; 24 (6): 882-90. doi: 10.1177/1933719116670517.

8. Altun T., Jindal S., Greenseid K., Shu J., et al. Low follicular fluid IL-6 levels in IVF patients are associated with increased likelihood of clinical pregnancy. J. Assist. Reprod. Genet. 2011. 28 (3): 245-51. doi: 10.1007/s10815-010-9502-8.

9. Schlossberger V., Schober L., Rehnitz J., Schaier M., et al. The success of assisted reproduction technologies in relation to composition of the total regulatory T cell (Treg) pool and different Treg subsets. Hum. Reprod. 2013; 28 (11): 3062-73. doi: 10.1093/humrep/det316.

10. Andreeva E.A., Khonina N.A., Tikhonova M.A., Batorov E.V., et al. Regulatory T cells in follicular fluid of women undergoing IVF treatment. Meditsinskaya immunologiya. 2018; 20 (5): 657-66. (in Russian)

11. Arruvito L., Sotelo A.I., Billordo A., Fainboim L.A. Physiological role for inducible FOXP3(+) Treg cells. Lessons from women with reproductive failure. Clin. Immunol. 2010; 136 (3): 432-41. doi: 10.1016/j.clim.2010.05.002.

12. Hosseini S., Shokri F., Pour A.S., Jeddi-Tehrani M., et al. A shift in the balance of T17 and Treg cells in menstrual blood of women with unexplained recurrent spontaneous abortion. J. Reprod. Immunol. 2016; 116: 13-22. doi: 10.1016/j.jri.2016.03.001.

13. Du M.R., Guo PF., Piao H.L., Wang S.C., et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal-fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J. Immunol. 2014; 15 (192): 1502-11. doi: 10.4049/jimmunol.1203425.

14. Krstic E.V., Krstic M., Yudaev V.N. Effect of oocytes quality and ovarian reserve on the therapeutic potential of in vitro fertilization in patients of late reproductive age. Almanakh klinicheskoy meditsiny. 2014; 31: 70-5. (in Russian)

15. zhang М., Bu Т., Tian H.-Q., Li X., et al. Analysis of factors influencing the cumulative pregnancy outcome of In Vitro fertilization-embryo transfer in women aged 35 years and older with normal ovarian reserve. Reprod Dev Med. 2017; 1 (4): 204-9. doi: 10.4103/2096-2924.224913.

16. Ye H., Li X., Zheng T., Liang X., et al. The effect of the immune system on ovarian function and features of ovarian germline stem cells. Springerplus. 2016; 5 (1): 990. doi: 10.1186/s40064-016-2390-3.

17. Kollmann Z., Schneider S., Fux M., Bersinger N.A., von Wolff M. Gonadotrophin stimulation in IVF alters the immune cell profile in follicular fluid and the cytokine concentrations in follicular fluid and serum. Hum. Reprod. 2017; 32 (4): 820-31. doi: 10.1093/humrep/dex005.

18. Hammadeh M.E., Fischer-Hammadeh C., Amer A.S., Rosenbaum P., et al. Relationship between cytokine concentration in serum and preovulatory follicular fluid and in vitro fertilization/intracytoplasmic sperm injection outcome. Chem. Immunol. Allergy. 2005; 88: 80-97. doi: 10.1159/000087822.

19. Zenclussen M.L., Thuere C., Ahmad N., Wafula P.O., et al. The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy. Am. J. Reprod. Immunol. 2010; 63 (3): 200-8. doi: 10.1111/j.1600-0897.2009.00793.x.

20. Lee S.K., Kim C.J., Kim D.-J., Kang J.-H. Immune cells in the female reproductive tract. Immune Network. 2015; 15 (1): 16-26. doi: 10.4110/in.2015.15.1.16.

21. Jiang R., Yan G., Xing J., Wang Z., et al. Abnormal ratio of CD57+ cells to CD56+ cells in women with recurrent implantation failure. Am. J. Reprod. Immunol. 2017; 78 (5): e12777. doi: 10.1111/aji.12708.

22. Shima T., Sasaki Y., Itoh M., Nakashima A., et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 2010; 85 (2): 121-9. doi: 10.1016/j.jri.2010.02.006.

23. Robertson S.A., Care A.S., Moldenhauer L.M. Regulatory T cells in embryo implantation and the immune response to pregnancy. J. Clin. Invest. 2018; 128 (10): 4224-35. doi: 10.1172/JCI122182.

24. Nehar-Belaid D., Courau T., Derian N., Florez L., et al. Regulatory T cells orchestrate similar immune evasion of fetuses and tumors in mice. J. Immunol. 2016; 196 (2): 678-90. doi: 10.4049/jimmunol.1501834.

25. Rahimzadeh M., Norouzian M., Arabpour F., Naderi N. Regulatory T-cells and preeclampsia: an overview of literature. Expert Rev. Clin. Immunol. 2016; 12 (2): 209-27. doi: 10.1586/1744666X.2016.1105740.

26. Zhou J., Wang Z., Zhao X., Wang J., et al. An increase of Treg cells in the peripheral blood is associated with a better in vitro fertilization treatment outcome. Am. J. Reprod. Immunol. 2012; 68 (2): 100-6. doi: 10.1111/j.1600-0897.2012.01153.x.

27. Vieyra-Lobato M.R., Vela-Ojeda J., Montiel-Cervantes L., Lopez-Santiago R., et al. Description of CD8+ regulatory T lymphocytes and their specific intervention in graft-versus-host and infectious diseases, autoimmunity and cancer. J. Immunol. Res. 2018; 2018: 3758713. doi: 10.1155/2018/3758713.

28. Churlaud G., Pitoiset F., Jebbawi F., Lorenzon R., et al. Human and mouse CD8+CD25+FOXP3+ regulatory T cells at steady state and during Interleukin-2 therapy. Front. Immunol. 2015; 6: 171. doi: 10.3389/fimmu.2015.00171.

29. Patterson S.J., Pesenacker A.M., Wang A.Y., Gillies J., et al. T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. J. Clin. Invest. 2016; 126 (3): 1039-51. doi: 10.1172/JCI83987.

30. Oakley O.R., Kim H.Y., El-Amouri I., Lin P.P., et al. Periovulatory leukocyte infiltration in the rat ovary. Endocrinology. 2010; 151 (9): 4551-9. doi: 110.1210/en.2009-1444.

31. Wu M.., Chen X., Lou J., Zhang S., et al. TGF-p1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget. 2016; 7 (28): 44 534^4. doi: 10.18632/oncotarget.10003.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»