Thymic mast cells: at three-way crossroads

Abstract

The review examines the role of thymic mast cells in the interaction of three integrative systems - nervous, endocrine and immune. Mast cell structure, the mechanism of connections with nerve terminals, the spectrum of mediators and hormones that provide intercellular communication are analyzed. It has been shown that mast cells are both receptor and effector cells that enhance the mechanisms of nervous regulation. The review also provides arguments in favor of mast cell contribution to the thymus endocrine function. The role of thymic mast cells in the cooperation of three integrative systems is considered in the context of regulation of T-cell maturation and differentiation.

Keywords:thymus; mast cells; neuro-mast cells contacts; neuropeptides; T-cell differentiation; thymic hormones

For citation: Gusel’nikova V.V., Polevshchikov A.V. Thymic mast cells: at three-way crossroads. Immunologiya. 2021; 42 (4): 327-36. DOI: https://doi.org/10.33029/0206-4952-2021-42-4-327-336 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Yushkov B.G., Chereshnev V.A., Klimin V.G., Artashyan O.S. Mast cells. Physiology and pathophysiology. Moscow: Meditsina, 2011. (in Russian)

2. Korneva E.A., Shanin S.N., Novikova N.S., Pugach V.A. Cellmolecular basis of neuroimmune interactions during stress. I.M. Sechenov Russian Journal of Physiology. 2017; 103 (3): 217–29. (in Russian)

3. Khaitov R.M., Yarilin A.A., Pinegin B.V. Immunology: atlas. Moscow: GEOTAR-Media, 2011. (in Russian)

4. da Silva E.Z.M., Jamur M.C., Oliver C. Mast cell function: a new vision of an old cell. J. Histochem. Cytochem. 2014; 62 (10): 698–738. DOI: https://doi.org/10.1369/0022155414545334

5. Varricchi G., de Paulis A., Marone G., Galli S.J. Future needs in mast cell biology. Int. J. Mol. Sci. 2019; 20 (18): 4397. DOI: https://doi.org/10.3390/ijms20184397

6. Yarilin A.A., Belyakov I.M. Thymus as an organ of the endocrine system. Immunologiya. 1996; 17 (1): 4–10. (in Russian)

7. Kvetnoi I.M., Yarilin A.A., Polyakova V.O., Knyazkin I.V. Neuroimmunoendocrinology of the thymus. Saint Petersburg: Publishing house DEAN, 2005. (in Russian)

8. Yarilin A.A. Immunology. Moscow: GEOTAR-Media, 2010. (in Russian)

9. Yarilin A.A. Radiation and immunity. Interference of ionizing radiation with key immune processes. Radiation Biology. Radioecology. 1999; 39 (1): 181–9. (in Russian)

10. Yarilin A.A. Age-related changes in the thymus and T-lymphocytes. Immunologiya. 2003; 24 (2):117–94. (in Russian)

11. Ehrlich P. Beitrage zur Theorie und Praxis der histologischen Farbung. Leipzig University, 1878.

12. Grigorev I.P., Korzhevskii D.E. Mast cells in the vertebrate brain: localization and functions. Journal of Evolutionary Biochemistry and Physiology. 2021; 57 (1): 17–32. DOI: https://doi.org/10.31857/S0044452921010046 (in Russian)

13. Gushchin I.S. Autorestriction and resolution of allergic process. Immunologiya. 2020; 41 (6): 557–80. DOI: https://doi.org/10.33029/0206-4952-2020-41-6-557-580 (in Russian)

14. Pinegin B.V., Pashenkov M.V., Pinegin V.B., Khaitov R.M. Mucosal epithelial cells and novel approaches to immunoprophylaxy and immunotherapy of infectious diseases. Immunologiya. 2020; 41 (6): 486–500. DOI: https://doi.org/10.33029/0206-4952-2020-41-6-486-500 (in Russian)

15. Goldstein G. Mast cells in the human thymus. Aust. J. Exp. Biol. Med. Sci. 1966; 44 (5): 593–5. DOI: https://doi.org/10.1038/icb.1966.56

16. Bodey B., Calvo W., Prummer O., Fliedner T.M., Borysenko M. Development and histogenesis of the thymus in dog: a light and electron microscopical study. Dev. Com. Immunol. 1987; 11 (1): 227–38. DOI: https://doi.org/10.1016/0145-305x(87)90023-1

17. Guselnikova V.V., Sinitsyna V.F., Korolkova Ye.D., Kharazova A.D., Polevshchikov A.V. Thymic mast cell localization at different stages of the ontogenesis in the mouse. Morphologiia. 2012; 141 (2): 40–5. (in Russian)

18. Dvorak A.M. Human mast cells. Adv. Anat. Embryol. Cell. Biol. 1989; 114: 1–107. DOI: https://doi.org/10.1007/978-3-642-74145-6

19. Ribatti D., Crivellato E. The role of mast cell in tissue morphogenesis. Thymus, duodenum, and mammary gland as examples. Exp. Cell. Res. 2016; 341 (1): 105–9. DOI: https://doi.org/10.1016/j.yexcr.2015.11.022

20. Forsythe P. Mast Cells in Neuroimmune Interactions. Trends Neurosci. 2019; 42 (1): 43–55. DOI: https://doi.org/10.1016/j.tins.2018.09.006

21. Huber M., Cato A., Ainooson G.K., Freichel M., Tsvilovskyy V., Jessberger R., et al. Regulation of the pleiotropic effects of tissue-resident mast cells. J. Allergy Clin. Immunol. 2019; 144 (4S): S31–S45. DOI: https://doi.org/10.1016/j.jaci.2019.02.004

22. Gusel’nikova V.V., Sukhorukova E.G., Fedorova E. A., Polevshchikov A.V., Korzhevskii D. E. A Method for the Simultaneous Detection of Mast Cells and Nerve Terminals in the Thymus in Laboratory Mammals. Neuroscience and Behavioral Physiology. 2015; 45 (4): 371–4. DOI: https://doi.org/10.1007/s11055-015-0084-x

23. Gamble H.J., Goldby S. Mast cells in peripheral nerve trunks. Nature. 1961; 189 (4766): 766–7. https://doi.org/10.1038/189766a0.

24. Okun M. Histogenesis of melanocytes. J. Invest. Dermatol. 1965; 44: 285–99.

25. Andrew A., Rawdon B.B. The embryonic origin of connective tissue mast cells. J. Anat. 1987; 150 (1): 219–27.

26. Ribatti D., Crivellato E. Mast cell ontogeny: an historical overview. Immunol. Lett. 2014; 159 (1-2): 11–4. DOI: https://doi.org/10.1016/j.imlet.2014.02.003

27. Danilova K.M. Controversial issues of the origin and functional significance of mast cells. Archive of Pathology. 1958; (1): 3–12. (in Russian)

28. Ginsburg H. The in vitro differentiation and culture of normal mast cells from the mouse thymus. Ann. N. Y. Acad. Sci. 1963; 103: 20–39. DOI: https://doi.org/10.1111/j.1749-6632.1963.tb53690.x

29. Csaba G. Immunoendocrinology: faulty hormonal imprinting in the immune system. Acta Microbiol. Immunol. Hung. 2014; 61(2): 89–106. DOI: https://doi.org/10.1556/AMicr.61.2014.2.1

30. Ginsburg H., Lagunoff D. The in vitro differentiation of mast cells. Cultures of cells from immunized mouse lymph nodes and thoracic duct lymph on fibroblast monolayers. J. Cell. Biol. 1967; 35 (3): 685–97. DOI: https://doi.org/10.1083/jcb.35.3.685

31. Winandy S., Brown M. No DL1 Notch ligand? GATA be a mast cell. Nat. Immunol. 2007; 8 (8): 796–8. DOI: https://doi.org/10.1038/ni0807-796

32. Scripture-Adams D.D., Damle S.S., Li L., Elihu K.J., Qin S., Arias A.M., et al. GATA-3 dose-dependent checkpoints in early T cell commitment. J. Immunol. 2014; 193 (7): 3470–91. DOI: https://doi.org/10.4049/jimmunol.1301663

33. Dahlin J.S., Hallgren J. Mast cell progenitors: origin, development and migration to tissues. Mol. Immunol. 2015; 63 (1): 9–17. DOI: https://doi.org/10.1016/j.molimm.2014.01.018

34. Gusel'nikova V.V., Polevshchikov A.V. Changes of thymic mast cell population after accidental transformation. Cytokines and inflammation. 2013 ;12 (1-2): 125–31. (in Russian)

35. Guselnicova V.V., Polevshchikov A.V. Mouse thymic mast cells in normal state and after stress-induced atrophy. Russian Allergological Journal. 2013; (4): 24–32. (in Russian)

36. Schiller M., Ben-Shaanan T.L., Rolls A. Neuronal regulation of immunity: why, how and where? Nat. Rev. Immunol. 2021; 21(1): 20–36. DOI: https://doi.org/10.1038/s41577-020-0387-1

37. Forsythe P., Bienenstock J. The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses. Chem. Immunol. Allergy. 2012; 98: 196–221. DOI: https://doi.org/10.1159/000336523

38. McKay D.M., Bienenstock J. The interaction between mast cells and nerves in the gastrointestinal tract. Immunol. Today. 1994; 15 (11): 533–8. DOI: https://doi.org/10.1016/0167-5699(94)90210-0

39. Weigand L.A., Myers A.C., Meeker S., Undem B.J. Mast cell-cholinergic nerve interaction in mouse airways. J. Physiol. 2009; 587 (Pt. 13): 3355–62. DOI: https://doi.org/10.1113/jphysiol.2009.173054

40. Scholzen T., Armstrong C.A., Bunnett N.W., Luger T.A., Olerud J.E., Ansel J.C. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp. Dermatol. 1998; 7 (2-3): 81–96. DOI: https://doi.org/10.1111/j.1600-0625.1998.tb00307.x

41. Newson B., Dahlström A., Enerbäck L., Ahlman H. Suggestive evidence for a direct innervation of mucosal mast cells. Neuroscience. 1983; 10 (2): 565–70. DOI: https://doi.org/10.1016/0306-4522(83)90153-7

42. Wilhelm M., Silver R., Silverman A.J. Central nervous system neurons acquire mast cell products via transgranulation. Eur. J. Neurosci. 2005; 22 (9): 2238–48. DOI: https://doi.org/10.1111/j.1460-9568.2005.04429.x

43. Assas B.M., Pennock J.I., Miyan J.A. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front. Neurosci. 2014; 8: 23. DOI: https://doi.org/10.3389/fnins.2014.00023

44. Kleij H.P., Bienenstock J. Significance of Conversation between Mast Cells and Nerves. Allergy Asthma Clin. Immunol. 2005; 1 (2): 65–80. DOI: https://doi.org/10.1186/1710-1492-1-2-65

45. Nakanishi M., Furuno T. Molecular basis of neuroimmune interaction in an in vitro coculture approach. Cell. Mol. Immunol. 2008; 5 (4): 249–59. DOI: https://doi.org/10.1038/cmi.2008.31

46. Severini C., Improta G., Falconieri-Erspamer G., Salvadori S., Erspamer V. The tachykinin peptide family. Pharmacol. Rev. 2002; 54 (2): 285–322. DOI: https://doi.org/10.1124/pr.54.2.285

47. Eftekhari S., Warfvinge K., Blixt F.W., Edvinsson L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J. Pain. 2013; 14 (11): 1289–303. DOI: https://doi.org/10.1016/j.jpain.2013.03.010

48. Mikami N., Matsushita H., Kato T., Kawasaki R., Sawazaki T., Kishimoto T., et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J. Immunol. 2011; 186 (12): 6886–93. DOI: https://doi.org/10.4049/jimmunol.1100028

49. Talme T., Liu Z., Sundqvist K.G. The neuropeptide calcitonin gene-related peptide (CGRP) stimulates T cell migration into collagen matrices. J. Neuroimmunol. 2008; 196 (1-2): 60–6. DOI: https://doi.org/10.1016/j.jneuroim.2008.02.007

50. Goetzl E.J., Pankhaniya R.R., Gaufo G.O., Mu Y., Xia M., Sreedharan S.P. Selectivity of effects of vasoactive intestinal peptide on macrophages and lymphocytes in compartmental immune responses. Ann. N. Y. Acad. Sci. 1998; 840: 540–50. DOI: https://doi.org/10.1111/j.1749-6632.1998.tb09593.x

51. Ran W.Z., Dong L., Tang C.Y., Zhou Y., Sun G.Y., Liu T., et al. Vasoactive intestinal peptide suppresses macrophage-mediated inflammation by downregulating interleukin-17A expression via PKA- and PKC-dependent pathways. Int. J. Exp. Pathol. 2015; 96 (4): 269–75. DOI: https://doi.org/10.1111/iep.12130

52. Burnet F.M. Cellular Immunilogy. Carlton: Melbourne University Press – London: Cambridge University Press, 1969.

53. Csaba G., Törö I., Mold K. Some new data concerning the functional unity of the «lymphatic system». Cells Tissues Organs. 1962; 48 (1-2): 114–21. DOI: https://doi.org/10.1159/000141830

54. Zachariah M.A., Cyster J.G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science. 2010; 328 (5982): 1129–35. DOI: https://doi.org/10.1126/science.1188222

55. Kato S., Schoefl G.I. Microvasculature of normal and involuted mouse thymus. Light- and electron-microscopic study. Acta Anat. 1989; 135 (1): 1–11. DOI: https://doi.org/10.1159/000146715

56. Starskaya I.S., Polevshchikov A.V. Morphological aspects of thymic atrophy under stress. Immunologiya. 2013; 34 (5): 271–7. (in Russian)

57. Starskaya I.S., Kudryavtsev I.V., Guselnikova V.V., Serebriakova M.K., Polevshchikov A.V. Apoptosis level in developing T cells in the thymus. Dokl. Biochem. Biophys. 2015; 462: 163–5. DOI: 10.1134/S1607672915030060

58. Bellinger D.L., Lorton D., Felten S.Y., Felten D.L. Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int. J. Immunopharmacol. 1992; 14 (3): 329–44. DOI: https://doi.org/10.1016/0192-0561(92)90162-e

59. Reuter S., Stassen M., Taube C. Mast cells in allergic asthma and beyond. Yonsei Med. J. 2010; 51 (6): 797–807. DOI: https://doi.org/10.3349/ymj.2010.51.6.797

60. Luo X., Tarbell K.V., Yang H., Pothoven K., Bailey S.L., Ding R., et al. Dendritic cells with TGF-beta1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA. 2007; 104 (8): 2821–6. DOI: https://doi.org/10.1073/pnas.0611646104

61. Durkin H.G., Waksman B.H. Thymus and tolerance. Is regulation the major function of the thymus? Immunol. Rev. 2001; 182: 33–57. DOI: https://doi.org/10.1034/j.1600-065x.2001.1820103.x

62. Stampachiacchiere B., Marinova T., Velikova K., Philipov S., Stankulov I.S., Chaldakov G.N. et al. Altered levels of nerve growth factor in the thymus of subjects with myasthenia gravis. J. Neuroimmunol. 2004; 146 (1-2): 199–202. DOI: https://doi.org/10.1016/j.jneuroim.2003.10.048

63. Raica M., Cimpean A.M., Ribatti D. Myasthenia gravis and the thymus gland. A historical review. Clin. Exp. Med. 2008; 8 (2): 61–4. DOI: https://doi.org/10.1007/s10238-008-0158-y

64. Siemion I.Z., Kluczyk A., Cebrat M. The peptide molecular links between the central nervous and the immune systems. Amino Acids. 2005; 29 (3): 161–76. DOI: https://doi.org/10.1007/s00726-005-0231-8

65. Weinstock J.V., Elliott D. The substance P and somatostatin interferon-gamma immunoregulatory circuit. Ann. N. Y. Acad. Sci. 1998; 840: 532–9. DOI: https://doi.org/10.1111/j.1749-6632.1998.tb09592.x

66. Söder O., Hellström P.M. Neuropeptide regulation of human thymocyte, guinea pig T lymphocyte and rat B lymphocyte mitogenesis. Int. Arch. Allergy. Appl. Immunol. 1987; 84 (2): 205–11. DOI: https://doi.org/10.1159/000234424

67. Delgado M., Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids. 2013; 45 (1): 25–39. DOI: https://doi.org/10.1007/s00726-011-1184-8

68. Zdor V.V., Markelova E.V., Fadeev V.V., Tikhonov Ya.N. Morphofunctional changes in the endocrine glands and their relationship with cells of innate immunity – mast cells in experimental thyrotoxicosis. Russian Journal of Immunology. 2018; 21 (4): 545–52. DOI: https://doi.org/10.31857/S102872210002373-5 (in Russian)

69. Savino W., Arzt E., Dardenne M. Immunoneuroendocrine connectivity: the paradigm of the thymus-hypothalamus/pituitary axis. Neuroimmunomodulation. 1999; 6 (1-2): 126–36. DOI: https://doi.org/10.1159/000026372

70. Young W.S., Gainer H. Transgenesis and the study of expression, cellular targeting and function of oxytocin, vasopressin and their receptors. Neuroendocrinology. 2003; 78 (4): 185–203. DOI: https://doi.org/10.1159/000073702

71. Hadden J.W. Thymic endocrinology. Int. J. Immunopharmacol. 1992; 14 (3): 345–52. DOI: https://doi.org/10.1016/0192-0561(92)90163-f

72. Miller J.F.A.P. Immunological Significance of the Thymus of the Adult Mouse. Nature. 1962; 195 (4848): 1318–9. DOI: https://doi.org/10.1038/1951318a0

73. Polak J.M., Bloom S.R. Somatostatin localization in tissues. Scand. J. Gastroenterol. 1986; 21 (suppl.19): 11–21. DOI: https://doi.org/10.3109/00365528609087427

74. Zdrojewicz Z., Pachura E., Pachura P. The Thymus: A Forgotten, But Very Important Organ. Adv. Clin. Exp. Med. 2016; 25 (2): 369–75. DOI: https://doi.org/10.17219/acem/58802

75. Auger C., Monier J.C., Savino W., Dardenne M. Localization of thymulin (FTS-Zn) in mouse thymus. Comparative data using monoclonal antibodies following different plastic embedding procedures. Biol. Cell. 1985; 52 (2): 139–46. DOI: https://doi.org/10.1111/j.1768-322x.1985.tb00331.x

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»