Dynamics of immunological and microbiological indicators of oral fluid in caries therapy

Abstract

Introduction. The mucous membrane of the oral cavity is part of a single system of mucosal immunity and implements functions at the level of local and systemic immunity. Microflora together with innate immunity receptors (TLR, NLR, etc.) regulates the colonization resistance of mucous membranes, determines the severity of the infectious process and maintains the normocenosis of the oral cavity. Violations of the dynamic balance of colonization resistance can lead not only to dental caries, but also to other pathologies of both the oral cavity and the whole organism.

The aim of this study was to estimate the levels of α-defensins and secretory immunoglobulin A (sIgA), as well as representatives of the microbial community of the oral cavity of young people aged 19-22 years with caries of the occlusal and contact surfaces of posterior teeth against the background of prophylactic use of Licopid® 1 mg (glucosaminyl muramyl dipeptide, GMDP).

Material and methods. In 43 clinically healthy patients 19-22 years old with caries of the occlusal and contact surfaces of the lateral teeth, oral fluid was taken before taking the drug and 14 days after. Patients of the main group of 21 people from 1 to 10 days of observation received drug Licopid® (1 mg) (GMDP, AO Peptek, Moscow, Russia) sublingually, 1 tablet once a day. Participants of the comparison group (22 patients) did not received Licopid®. Oral fluid microbiota was assessed by RT-PCR using Dentoflor reagents («DNA-technology», Moscow). Primers V6 16S rDNA were used for NGS DNA sequencing on an MiSeq instrument (Illumina, USA). Microorganisms were identified using the Blast software. The analysis of α-defensins HNP1-3 and the content of sIgA in sublingual saliva were studied by enzyme-linked immunosorbent assay using Hycult Biotech (USA) and Vector-Best (Novosibirsk, Russia) reagents. For statistical processing of the data the Mann-Whitney test was used and the Biostat software.

Results. The use of the drug Licopid® 1 mg helps to restore the levels of α-defensins HNP1-3 and sIgA to the level of those in individuals with intact teeth, leads to a significant decrease in the representation of Porphyromonas gingivalis and Clostridium difficile and increases the diversity of oral microflora.

Conclusion. The use of Licopid® 1 mg after the caries treatment is accompanied by the correction of immunological parameters in the oral fluid.

Keywords:oral cavity; glucosaminyl muramyl dipeptide; GMDP; licopid; defensins; sIgA; innate immunity; microbiocenosis

For citation: Guryanova S.V., Kolesnikova N.V., Gudima G.O., Lezhava N.L., Karaulov A.V. Dynamics of immunological and microbiological indicators of oral fluid in caries therapy. Immunologiya. 2021; 42 (4): 386-94. DOI: https://doi.org/10.33029/0206-4952-2021-42-4-386-394 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. Authors declare no conflict of interests.

References

1. Khaitov R.M., Garib F.Yu. Immunology. Atlas. Moscow: GEOTAR-Media, 2020. 416 p. (in Russian)

2. Mark Welch J.L., Ramírez-Puebla S.T., Borisy G.G. Oral Microbiome Geography: Micron-Scale Habitat and Niche. Cell. Host Microbe. 2020; 28 (2): 160–8. DOI: https://doi.org/10.1016/j.chom.2020.07.009

3. Wade W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013; 69 (1): 137–43. DOI: https://doi.org/10.1016/j.phrs.2012.11.006

4. Goodacre R. Metabolomics of a superorganism. J. Nutr. 2007; 137 (1 Suppl): 259S–266S.

5. Karaulov A.V., Afanasyev S.S., Nesvizhsky Yu.V., Aleshkin V.A., Evstigneeva I.V., Afanasyev M.S., Bondarenko N.L., Voropaeva E.A., Aleshkin A.V., Kafarskaya L.I., Borisova O.Yu., Lakhtin V.M. Mucosal immunity and colonization resistance of the mucous open human cavities are normal and in pathological conditions. Moscow: Publishing House of the First Moscow State Medical University. I.M. Sechenova, 2017. 78 p. (in Russian)

6. Kuriakose S., Sundaresan C., Mathai V., Khosla E., Gaffoor F.M.A. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children. J. Indian Soc. Pedod. Prev. Dent. 2013; 31: 69–73. DOI: https://doi.org/10.4103/0970-4388.115697

7. Ranadheer E., Nayak U.A., Reddy N.V., Rao V.A. The relationship between salivary IgA levels and dental caries in children. J. Indian Soc. Pedod. Prev. Dent. 2011; 29: 106–12.

8. Gornowicz A., Tokajuk G., Bielawska A., Maciorkowska E., Jabłoński R., Wójcicka A., Bielawski K. The assessment of sIgA, histatin-5, and lactoperoxidase levels in saliva of adolescents with dental caries. Med. Sci. Monit. 2014; 29 (20): 1095–100. DOI: https://doi.org/10.12659/MSM.890468

9. Gulenko O.V., Khagurova S.B., Bykov I.M. Peculiarities of the physico/biochemical properties of the mouthloid liquid in children with dent caricos on the background of psychoneuvrological disorders. RUDN Journal of Medicine. 2017: 21 (3): 329–38. (in Russian). DOI: https://doi.org/10.22363/2313-0245-2017-21-3-329-338

10. Ribeiro T.R., Dria K.J., de Carvalho C.B., Monteiro A.J., Fonteles M.C., de Moraes Carvalho K., Fonteles C.S. Salivary peptide profile and its association with early childhood caries. Int. J. Paediatr. Dent. 2013; 23 (3): 225–34. DOI: https://doi.org/10.1111/j.1365-263X.2012.01258.x

11. Luthfi M., Setijanto D., Rahardjo M.B., Indrawati R., Rachmadi P., Ruth M.S.M.A., Dachlan Y.P. Correlation between human neutrophil peptide 1–3 secretion and azurophilic granule (CD63) expression in early childhood caries. Dent. Res. J. (Isfahan). 2019; 16 (2): 81–6. PMID: 30820201.

12. Borisova O.Yu., Aleshkin V.A., Pimenova A.S., Krukov A.I., Kunelskaya N.L., Gurov A.V., Shadrin G.B., Tovmasyan A.S., Efimov B.A., Kafarskaya L.I. The microbial composition of the microflora of the oropharynx in patients with tonsillar pathology. Infection and immunity. 2015; 5 (3): 225–32. DOI: https://doi.org/10.15789/2220-7619-2015-3-225-232 (in Russian)

13. Guryanova S.V., Khaitov R.M. Glucosaminylmuramyldipeptide – GMDP: effect on mucosal immunity (on the issue of immunotherapy and immunoprophylaxis). Immunologiya. 2020; 41 (2): 174–83. (in Russian). DOI: https://doi.org/10.33029/0206-4952-2020-41-2-174-183

14. Nikitushkin V.D., Demina G.R., Shleeva M.O., Guryanova S.V., Ruggiero A., Berisio R., Kaprelyants A.S. A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J. 2015; 282 (13): 2500–11. DOI: https://doi.org/10.1111/febs.13292

15. Kheygetyan A.V., Bragin E.A., Maksyukov S.Yu., Labushkina A.V., Alutina E.L., Harseeva G.G. Immunological parameters in patients with caries of the contact surfaces of the posterior teeth. Clinical laboratory diagnostics. 2015; 60 (8): 52–4. (in Russian)

16. Zaura E., Keijser B.J., Huse S.M., Crielaard W. Defining the healthy «core microbiome» of oral microbial communities. BMC Microbiol. 2009; 9: 259. DOI: https://doi.org/10.1186/1471-2180-9-259

17. How K.Y., Song K.P., Chan K.G. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front. Microbiol. 2016; 7: 53. DOI: https://doi.org/10.3389/fmicb.2016.00053

18. Dominy S.S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A., Nguyen M., Haditsch U., Raha D., Griffin C., Holsinger L.J., Arastu-Kapur S., Kaba S., Lee A., Ryder M.I., Potempa B., Mydel P., Hellvard A., Adamowicz K., Hasturk H., Walker G.D., Reynolds E.C., Faull R.L.M., Curtis M.A., Dragunow M., Potempa J. Porphyromonas gingivalis in Alzheimer disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances. 2019; 5 (1): eaau3333. DOI: https://doi.org/10.1126/sciadv.aau3333

19. Ye C., Katagiri S., Miyasaka N., Kobayashi H., Khemwong T., Nagasawa T., Izumi Y. The periodontopathic bacteria in placenta, saliva and subgingival plaque of threatened preterm labor and preterm low birth weight cases: a longitudinal study in Japanese pregnant women. Clin. Oral Investig. 2020; 24 (12): 4261–70. DOI: https://doi.org/10.1007/s00784-020-03287-4

20. Claudel J.P., Auffret N., Leccia M.T., Poli F., Corvec S., Dréno B. Staphylococcus epidermidis: A Potential New Player in the Physiopathology of Acne? Dermatology. 2019; 235 (4): 287–94. DOI: https://doi.org/10.1159/000499858

21. Kiseleva E.A., Te E.A. Justification of the need for immunocorrection in the complex treatment of chronic inflammatory periodontal diseases. Medicine in Kuzbass. 2006; 1: 13-17.

22. Lorenzi C., Bianchi N., Pinto A, Mazzetti V., Arcuri C. The role of periodontal bacteria, Porphyromonas Gingivalis, in Alzheimer's disease pathogenesis and aggravation: a review. J Biol. Regul. Homeost. Agents. 2021; 35 (3 suppl. 1): 37–45. DOI: https://doi.org/10.23812/21-3supp1-6

23. Tran V.T.A., Kang Y.J., Kim H.K., Kim H.R., Cho H. Oral Pathogenic Bacteria-Inducing Neurodegenerative Microgliosis in Human Neural Cell Platform. Int. J. Mol. Sci. 2021; 28; 22 (13): 6925. DOI: https://doi.org/10.3390/ijms22136925

24. Huang S., He T., Yue F., Xu X., Wang L., Zhu P., Teng F., Sun Z., Liu X., Jing G., Su X., Jin L., Liu J., Xu J. Longitudinal Multi-omics and Microbiome Meta-analysis Identify an Asymptomatic Gingival State That Links Gingivitis, Periodontitis, and Aging. mBio. 2021; 12 (2): e03281–20. DOI: https://doi.org/10.1128/mBio.03281-20

25. Sharma S., Weissman S., Walradt T., Aziz M., Vohra I., Acharya A., Sotiriadis J., Feuerstein J.D., Tabibian J.H. Readmission, healthcare consumption, and mortality in Clostridioides difficile infection hospitalizations: a nationwide cohort study. Int. J. Colorectal Dis. 2021. DOI: https://doi.org/10.1007/s00384-021-04001-w

26. Yun J.H., Park G.E., Ki H.K. Correlation between antibiotic consumption and the incidence of healthcare facility-onset Clostridioides difficile infection: a retrospective chart review and analysis. Antimicrob. Resist. Infect. Control. 2021; 10 (1): 117. DOI: https://doi.org/10.1186/s13756-021-00986-9

27. Meshcheryakova E., Makarov E., Philpott D., Andronova T., Ivanov V. Evidence for correlation between the intensities of adjuvant effects and NOD2 activation by monomeric, dimeric and lipophylic derivatives of N-acetylglucosaminyl-N-acetylmuramyl peptides. Vaccine. 2007; 25 (23): 4515–20. DOI: https://doi.org/10.1016/j.vaccine.2007.04.006

28. Laman A.G., Lathe R., Shepelyakovskaya A.O., Gartseva A., Brovko F.A., Guryanova S., Alekseeva L., Meshcheryakova E.A., Ivanov V.T. Muramyl peptides activate innate immunity conjointly via YB1 and NOD2. Innate Immun. 2016; 22 (8): 666–73. DOI: https://doi.org/10.1177/1753425916668982

29. Abramashvili Yu.G., Kolesnikova N.V., Borisova O.Yu., Guryanova S.V. Low molecular weight bioregulator of bacterial origin in condylomatosis therapy optimization. RUDN Journal of Medicine. 2020; 24 (2): 163–7. DOI: https://doi.org/10.22363/2313-0245-2020-24-2-163-167

30. Konorev M.R., Guryanova S.V., Tyshevich E.N., Pavlyukov R.A, Borisova O.Y. Advisable including glucosaminylmuramyldipeptide in Helicobacter pylori therapy: experience of ten-year investigation. RUDN Journal of Medicine. 2020; 24 (3): 269–82. DOI: https://doi.org/10.22363/2313-0245-2020-24-3-269-282

31. Guryanova S., Udzhukhu V., Kubylinsky A. Pathogenetic therapy of psoriasis by muramyl peptide. Frontiers in Immunology. 2019; 10: 1275. DOI: https://doi.org/10.3389/fimmu.2019.01275

32. Manapova E.R., Fazylov V. Kh., Guryanova S.V. Cytopenias and their correction during antiviral therapy of chronic hepatitis C in patients with genotype 1. Problems of Virology. 2017; 62 (4): 174–8. DOI: http://dx.doi.org/10.18821/0507-4088-2017-62-4-174-178 (in Russian)

33. Guryanova S.V., Borisova O.Yu., Kolesnikova N.V., Lezhava N.L., Kozlov I.G., Gudima G.O. The effect of muramyl peptide on the microbial composition of the microflora of the oral cavity. Immunologiya. 2019; 40 (6): 34–40. DOI: http://dx.doi.org/10.24411/0206-4952-2019-16005 (in Russian)

34. Rechkina E.A., Denisova G.F., Masalova O.V., Lideman L.F., Denisov D.A., Lesnova E.I., Ataullakhanov R.I., Gur'ianova S.V., Kushch A.A. Epitope mapping of antigenic determinants of hepatitis C virus proteins by phage display. Mol Biol (Mosk). 2006; 40 (2): 357–68. PMID: 16637277

35. Mitropanova M.N., Khanferyan R.A., Shulzhenko V.I. The functional activity of neutrophils in allergic diseases of the oral cavity in children and the possibility of its correction with Lycopid. Institute of Dentistry. 2005; 3: 92–3. (in Russian)

36. Balabolkin I.I., Kuznetsova N.I., Kuznetsova O.Yu. Changes in the treatment of lycopodium with the immune status of children with recurrent herpetic stomatitis, suffering from allergic diseases. Dentistry. 2004; 3: 49–52. (in Russian)

37. Mitropanova M.N. Positive effects of the immunomodulatory therapy in rehabilitation of children with congenital cleft lip and cleft palate on stages of the surgical treatment. RUDN Journal of Medicine. 2018; 22 (1): 57–66. DOI: http://dx.doi.org/10.22363/2313-0245-2018-22-1-57-66

38. Guryanova S.V., Kozlov I.G., Meshcheryakova E.A., Andronova T.M. The influence of glucosaminylmuramyldipeptide (GMDP) on the production of cytokines by mononucleated cells in patients with atopic bronchial asthma in vitro. Russian Allergological Journal. 2009; 3: 236. (in Russian)

39. Kolesnikova N.V., Kokov E.A., Kozlov I.G., Guryanova S.V., Andronova T.M. Clinical and immunological efficacy and prospects for the use of muramyl dipeptides in the treatment of atopic diseases. Medical Immunology. 2016; 18 (1): 15–20. DOI: http://dx.doi.org/10.15789/1563-0625-2016-1-15-20 (in Russian)

40. Nesterova I.V., Kolesnikova N.V., Nedelko N.A. Method for immunocorrection of lycopide local immunity disorders in patients with acute odontogenic periostitis. Dentist practitioner. 2006; 12 (148): 30–1. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»