Analysis of the mechanisms of development of the immune response in hepatitis B virus infection and ways to improve the effectiveness of vaccination

Abstract

Currently, a number of recombinant hepatitis B vaccines with a proven immunogenicity and safety profile are used in medical practice. Vaccination against this infection within the framework of national immunization programs in different countries of the world, including in Russia, helped to reduce the incidence of hepatitis B. However, despite the availability of effective drugs, there are groups of people who do not respond well to vaccination. Since the severity of the immune response to the hepatitis B virus is determined by many factors, an active search for approaches to improve the effectiveness of immunoprophylaxis in this infection continues. The article discusses the main ways of developing immune responses in hepatitis B virus infection, provides information on ways to improve the effectiveness of vaccination against this pathogen, one of which is the use of adjuvants. A brief description of the registered hepatitis B vaccines containing various adjuvants is presented. The main mechanisms of their action are considered; the results of a number of preclinical and clinical studies of modern hepatitis B vaccines using new adjuvants, which may be promising in terms of increasing the immunoge-nicity of vaccines, are summarized. Understanding the features of the formation of immunity against the hepatitis B virus in combination with the study of the mechanisms of action of new adjuvants will contribute to the creation of modern drugs that provide a balanced stimulation of the humoral and cellular immune response against the hepatitis B virus.

Keywords:prevention; infection; hepatitis B virus; vaccine; adjuvant; immune response; immunity

For citation: Avdeeva Zh.I., Alpatova N.A., Lysikova S.L., Gayderova L.A., Bondarev V.P. Analysis of the mechanisms of development of the immune response in hepatitis B virus infection and ways to improve the effectiveness of vaccination. Immunologiya. 2021; 42 (4): 403-14. DOI: https://doi.org/10.33029/0206-4952-2021-42-3-403-414 (in Russian)

Funding. The study was carried out in the framework of State task of the Scientific Centre for Expert Evaluation of Medicinal Products № 056-00005-21-00 for the applied scientific researches (R&D state register number 121022000147-4).

Conflict of interests. The authors declare no conflict of interests.

References

1. World Health Organization. Hepatitis B. 2020. URL: https://www.who.int/en/news-room/fact-sheets/detail/hepatitis-b (date of access July 27, 2020)

2. Schweitzer A., Horn J., Mikolajczyk R.T., Krause G., Ott J.J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015; 386 (10 003): 1546–55. DOI: https://doi.org/10.1016/S0140-6736(15)61412-X

3. Carter J.B., Saunders V.A. Virology: principles and applications. Chichester: John Wiley and Sons, 2007. 382 p. ISBN: 978-0470023860.

4. Покровский В.И., Пак С.Г., Брико Н.И., Данилкин Б.К. Инфекционные болезни и эпидемиология : учебное пособие. 3-е изд., испр. и доп. Москва : ГЭОТАР-Медиа, 2018: 1008 c. ISBN: 978-5-9704-4669-0. [Pokrovsky V.I., Pak S.G., Briko N.I., Danilkin B.K. Infectious diseases and epidemiology: a textbook. 3rd ed., rev. and add. Moscow: GEOTAR-Media, 2018: 1008 p. ISBN: 978-5-9704-4669-0. (in Russian)]

5. Bertoletti A., Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut. 2012; 61 (12): 1754–64. DOI: https://doi.org/10.1136/gutjnl-2011-301073

6. Zhang E., Lu M. Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection. Med. Microbiol. Immunol. 2015; 204 (1): 11–20. DOI: https://doi.org/10.1007/s00430-014-0370-1

7. Fisicaro P., Valdatta C., Boni C., Massari M., Mori C., Zerbini A., et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut. 2009; 58: 974–82. DOI: https://doi.org/10.1136/gut.2008.163600

8. Seeger C., Zoulim F., Mason W.S. Hepadnaviruses. In: D.M. Knipe, P.M. Howley (eds). Field’s Virology. Philadelphia, PA: Lippincott Williams and Wilkins, 2015: 2558 p. ISBN: 1469874229.

9. Busca А., Kumar А. Innate immune responses in hepatitis B virus (HBV) infection. J. Virol. 2014; 7: 11–22. DOI: https://doi.org/10.1186/1743-422X-11-22

10. Zou Z.Q., Wang L., Wang K., Yu J.G. Innate immune targets of hepatitis B virus infection. World J. Hepatol. 2016; 8 (17): 716–25. DOI: https://doi.org/10.4254/wjh.v8.i17.716

11. Pei R.J., Chen X.W., Lu M.J. Control of hepatitis B virus replication by interferons and Toll-like receptor signaling pathways. World J. Gastroenterol. 2014; 20 (33): 11 618–29. DOI: https://doi.org/10.3748/wjg.v20.i33.11618

12. Wu J., Meng Z., Jiang M., Zhang E., Trippler M., Broering R., et al. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. J. Immunol. 2010; 129 (3): 363–74. DOI: https://doi.org/10.1111/j.1365-2567.2009.03179.x

13. Jiang M., Broering R., Trippler M., Poggenpohl L., Fiedler M., Gerken G., et al. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen. J. Viral Hepat. 2014; 21 (12): 860–72. DOI: https://doi.org/10.1111/jvh.12216

14. Wu J., Meng Z., Jiang M., Pei R., Trippler M., Broering R., et al. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. J. Hepatol. 2009; 49 (4): 1132–40. DOI: https://doi.org/10.1002/hep.22751

15. Faure-Dupuy S., Lucifora J., Durantel D. Interplay between the hepatitis B virus and innate immunity: from an understanding to the development of therapeutic. Viruses. 2017; 9 (5): 95. DOI: https://doi.org/10.3390/v9050095

16. Shi B., Ren G., Hu Y., Wang S., Zhang Z., Yuan Z. HBsAg inhibit INF-α production in plasmacytoid dendritic cells through TNF-α and IL-10 induction in monocytes. PLoS One. 2012; 7 (9): e44900. DOI: https://doi.org/10.1371/journal.pone.0044900

17. Zhang X., Ma Z., Liu H., Liu J., Meng Z., Broering R., et al. Role of Toll-like receptor 2 in the immune response against hepadnaviral infection. J. Hepatol. 2012; 57 (3): 522–28. DOI: https://doi.org/10.1016/j.jhep.2012.05.004

18. Yoneda M., Hyun J., Jakubski S., Saito S., Nakajima A., Schiff E.R., Thomas E. Hepatitis B virus and DNA stimulation trigger a rapid innate immune response through NF-kappa B. J. Immunol. 2016; 197 (2): 630–43. DOI: https://doi.org/10.4049/jimmunol.1502677

19. Visvanathan K., Skinner N.A., Thompson A.J., Riordan S.M., Sozzi V., Edwards R., et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. J. Hepatol. 2007; 45 (1): 102–10. DOI: https://doi.org/10.1002/hep.21482

20. Hösel M., Quasdorff M., Wiegmann K., Webb D., Zedler U., Broxtermann M., et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. J. Hepatol. 2009; 50 (6): 1773–82. DOI: https://doi.org/10.1002/hep.23226

21. Watashi K., Liang G., Iwamoto M., Marusawa H., Uchida N., Daito T., et al. Interleukin-1 and tumor necrosis factor-alpha trigger restriction of hepatitis B virus infection via a cytidine deaminase AID. J. Biol. Chem. 2013; 288 (44): 31 715–27. DOI: https://doi.org/10.1074/jbc.M113.501122

22. Gruffaz M., Testoni B., Luangsay S., Fusil F., Malika A.G., Mancip J., et al. The nuclear function of Hepatitis B capsid (HBc) protein is to inhibit IFN response very early after infection of hepatocytes. J. Hepatol. 2013; 58: 276A.

23. Zhao G., An B., Zhou H., Wang H., Xu Y., Xiang X., et al. Impairment of the retinoic acid-inducible gene-I-IFN-beta signaling pathway in chronic hepatitis B virus infection. Int. J. Mol. Med. 2012; 30 (6): 1498–504. DOI: https://doi.org/10.3892/ijmm.2012.1131

24. Kumar M., Jung S.Y., Hodgson A.J., Madden C.R., Qin J., Slagle B.L. Hepatitis B virus regulatory HBx protein binds to adaptor protein IPS-1 and inhibits the activation of beta interferon. J. Virol. 2011; 85 (2): 987–95. DOI: https://doi.org/10.1128/JVI.01825-10

25. Wei C., Ni C., Song T., Liu Y., Yang X., Zheng Z., et al. The hepatitis B virus protein disrups innate immunity by down regulating mitochondrial antiviral signaling protein. J. Immunol. 2010; 185 (2): 1158–68. DOI: https://doi.org/10.4049/jimmunol.0903874

26. Chen J., Wu M., Zhang X., Zhang W., Zhang Z., Chen L., et al. Hepatitis B virus polymerase impairs interferon-α-induced STAT activation through inhibition of importin-α5 and protein kinase C-δ. J. Hepatol. 2013; 57 (2): 470–82. DOI: https://doi.org/10.1002/hep.26064

27. Liu Y., Li J., Chen J., Li Y., Wang W., Du X., Song W., Zhang W., Lin L., Yuan Z. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J. Virol. 2015; 89: 2287–300. DOI: https://doi.org/10.1128/JVI.02760-14

28. Guo H., Jiang D., Ma D., Chang J., Dougherty A.M., Cuconati A., et al. Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J. Virol. 2009; 83 (2): 847–58. DOI: https://doi.org/10.1128/JVI.02008-08

29. Thimme R., Wieland S., Steiger C., Ghrayeb J., Reimann K.A., Purcell R.H., Chisari F.V. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 2003; 77 (1): 68–76. DOI: https://doi.org/10.1128/jvi.77.1.68-76.2003

30. Said Z.N., Abdelwahab K.S. Induced immunity against hepatitis B virus. World J. Hepatol. 2015; 7 (12): 1660–70. DOI: https://doi.org/10.4254/wjh.v7.i12.1660

31. Wang L.,Wang K., Zou Z.Q. Crosstalk between innate and adaptive immunity in hepatitis B virus infection. World J. Hepatol. 2015; 7 (30): 2980–91. DOI: https://doi.org/10.4254/wjh.v7.i30.2980

32. Tan A., Koh S., Bertoletti А. Immune response in hepatitis B virus infection. Cold Spring Harb. Perspect. Med. 2015; 5 (8): a021428. DOI: https://doi.org/10.1101/cshperspect.a021428

33. Romanò L., Paladini S., Galli C., Galli C., Raimondo G., Pollicino T., Zanetti A.R. Hepatitis B vaccination: are escape mutant viruses a matter of concern? Hum. Vaccin. Immunother. 2015; 11 (1): 53–7. DOI: https://doi.org/10.4161/hv.34306

34. World Health Organization. Guidelines for the Prevention Care and Treatment of Persons with Chronic Hepatitis B Infection: March 2015. ISBN: 978 92 4 154905 9.

35. Pham A.M., Santa Maria F.G., Lahiri T., Friedman E., Marié I.J., Levy D.E. PKR transduces MDA5-dependent signals for type I IFN induction. PLoS Pathog. 2016; 12 (3): e1005489. DOI: https://doi.org/10.1371/journal.ppat.1005489

36. Zheng M., Sun R., Wei H., Tian Z. NK cells help induce anti-hepatitis B virus CD8+ T cell immunity in mice. J. Immunol. 2016; 196 (10): 4122–31. DOI: https://doi.org/10.4049/jimmunol.1500846

37. Falschlehner C., Schaefer U., Walczak H. Following TRAIL’s path in the immune system. J. Immunol. 2009; 127 (2): 145–54. DOI: https://doi.org/10.1111/j.1365-2567.2009.03058.x

38. Phillips S., Chokshi S., Riva A., Evans A., Williams R., Naoumov N.V. CD8+ T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J. Immunol. 2010; 184 (1): 287–95. DOI: https://doi.org/10.4049/jimmunol.0902761

39. Ye B., Liu X., Li X., Kong H., Tian L., Chen Y. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 2015; 6 (3): e1694. DOI: https://doi.org/10.1038/cddis.2015.42

40. Nebbia G., Peppa D., Schurich A., Khanna P., Singh H.D., Cheng Y., et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One. 2012; 7 (10): e47648. DOI: https://doi.org/10.1371/journal.pone.0047648

41. Cao W., Qiu Z., Zhu T., Li Y., Han Y., Li T. CD8+ T cell responses specific for hepatitis B virus core protein in patients with chronic hepatitis B virus infection. J. Clin. Virol. 2014; 61 (1): 40–6. DOI: https://doi.org/10.1016/j.jcv.2014.06.022

42. Lok A.S., McMahon B.J. Chronic hepatitis B: update 2009. J. Hepatol. 2009; 50 (3): 661–2. DOI: https://doi.org/10.1002/hep.23190

43. Hollinger F.B., Liang T.J. Hepatitis B Virus. In: Knipe D.M. (eds). Fields Virology. 4th ed. Vol. 2. Philadelphia: Lippincott Williams and Wilkins, 2001: 2402–57.

44. Ma Z., Zhang E., Yang D., Lu M. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell. Mol. Immunol. 2015; 12 (3): 273–82. DOI: https://doi.org/10.1038/cmi.2014.112

45. Zeinab N.A., Kouka S.A. Induced immunity against hepatitis B virus. World J. Hepatol. 2015; 7 (12): 1660–70. DOI: https://doi.org/10.4254/wjh.v7.i12.1660

46. Семененко Т.А. Иммунный ответ при вакцинации против гепатита В у лиц с иммунодефицитными состояниями. Эпидемиология и вакцинопрофилактика. 2011; 1 (56): 51–8. [Semenenko T.A. Immune response for vaccination against hepatitis B in people with immunodeficiency states. Epidemiology and vaccine prevention. 2011; 1 (56): 51–8. (in Russian)]

47. Shen L., Wang F., Wang F., Cui F., Zhang S., Zheng H., et al. Efficacy of yeast-derived recombinant hepatitis B vaccine after being used for 12 years in highly endemic areas in China. Vaccine. 2012; 30 (47): 6623–27. DOI: https://doi.org/10.1016/j.vaccine.2012.08.067

48. Yanny B., Konyn P., Najarian L.M., Mitry A., Saab S. Management approaches to hepatitis B virus vaccination nonresponse. Gastroenterol. Hepatol. (N.Y.). 2019; 15 (2): 93–9. PMID: 31011303; PMCID: PMC6469266.

49. Aghasadeghi M.R., Banifazl M., Aghakhani A., Eslamifar A., Vahabpour R., Ramezani A. No evidence for occult HBV infection in hepatitis B vaccine non-responders. Iran. J. Microbiol. 2014; 6 (5): 350–3. PMID: 25848527.

50. Leroux-Roels G. Old and New adjuvants for hepatitis B vaccines. Med. Microbiol. Immunol. 2015; 204 (1): 69–78. DOI: https://doi.org/10.1007/s00430-014-0375-9

51. Вакцины против гепатита В: документ по позиции ВОЗ – июль 2017. Еженедельный эпидемиологический бюллетень. 2017; 27 (92): 369–92. URL: https://www.who.int/wer/2017/pp_hepb_2017_ru.pdf [Hepatitis B vaccines: WHO position paper – July 2017. Weekly Epidemiological Bulletin. 2017; 27 (92): 369–92. URL: https://www.who.int/wer/2017/pp_hepb_2017_ru.pdf (in Russian)]

52. Christiaansen A.F., Schmidt M.E., Hartwig S.M., Varga S.M. Host genetics play a critical role in controlling CD8 T cell function and lethal immunopathology during chronic viral infection. PLoS Pathog. 2017; 13: e1006498. DOI: https://doi.org/10.1371/journal.ppat.1006498

53. Ito H., Ando T., Nakamura M., Ishida H., Kanbe A., Kobiyama K., et al. Induction of humoral and cellular immune response to hepatitis B virus (HBV) vaccine can be upregulated by CpG oligonucleotides complexed with Dectin-1 ligand. J. Viral Hepat. 2017; 24 (2): 155–62. DOI: https://doi.org/10.1111/jvh.12629

54. HEPLISAV-BТМ. FDA. URL: https://www.fda.gov/vaccines-blood-biologics/vaccines/heplisav-b

55. Campbell J.D. Development of the CpG adjuvant 1018: a case study. In: Fox C. (eds). Vaccine Adjuvants. Methods in Molecular Biology. Vol. 1494. New York: Humana Press, 2017: 15–27. DOI: https://doi.org/10.1007/978-1-4939-6445-1_2

56. HEPLISAV-BТМ. FDA Advisory Committee Briefing Document. URL: https://www.fda.gov/media/106639/download

57. Jackson S., Lentino J., Kopp J., Murray L., Ellison W., Rhee M., et al. Immunogenicity of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed hepatitis B vaccine in adults. Vaccine. 2018; 36 (5): 668–74. DOI: https://doi.org/10.1016/j.vaccine.2017.12.038

58. Package Insert of Vaccine Fendrix. URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-Product_Information/human/000550/WC500021704.pdf

59. Leroux-Roels G., Van Belle P., Vandepapeliere P., Horsmans Y., Janssens M., Carletti I., et al. Vaccine Adjuvant Systems containing monophosphoryl lipid A and QS-21 induce strong humoral and cellular immune responses against hepatitis B surface antigen which persist for at least 4 years after vaccination. Vaccine. 2015; 33 (8): 1084–91. DOI: https://doi.org/10.1016/j.vaccine.2014.10.078

60. Moon S.H., Shin E.C., Noh Y.W., Lim Y.T. Evaluation of hyaluronic acid-based combination adjuvant containing monophosphoryl lipid A and aluminum salt for hepatitis B vaccine. Vaccine. 2015; 33 (38): 4762–9. DOI: https://doi.org/10.1016/j.vaccine.2015.08.006

61. Burny W., Callegaro A., Bechtold V., Clement F., Delhaye S., Fissette L., et al. Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans. Front. Immunol. 2017; 8: 943. DOI: https://doi.org/10.3389/fimmu.2017.00943

62. Jesus S., Soares E., Cruz M.T., Borges O. Exosomes as adjuvants for the recombinant hepatitis B antigen: first report. Eur. J. Pharm. Biopharm. 2018; 133: 1–11. DOI: https://doi.org/10.1016/j.ejpb.2018.09.029

63. Soares E., Jesus S., Borges O. Chitosan: β-glucan particles as a new adjuvant for the hepatitis B antigen. Eur. J. Pharm. Biopharm. 2018; 131: 33–43. DOI: 10.1016/j.ejpb.2018.07.018

64. Saade F., Honda-Okubo Y., Trec S., Petrovsky N. A novel hepatitis B vaccine containing Advax™, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine. 2013; 31 (15): 1999–2007. DOI: https://doi.org/10.1016/j.vaccine.2012.12.077

65. Zhang C., Gong L., Chen Y., Wang X., Zhu S., Li D., et al. A human-derived protein SBP (HBsAg-binding protein) can bind to hepatitis B virus surface antigen (HBsAg) and enhance the immune response to hepatitis B virus (HBV) vaccine. Mol. Immunol. 2013; 53 (1–2): 60–71. DOI: https://doi.org/10.1016/j.molimm.2012.06.014

66. Miquilena-Colina M.E., Lozano-Rodríguez T., García-Pozo L., Sáez A., Rizza P., Capone I., et al. Recombinant interferon-alpha 2b improves immune response to hepatitis B vaccination in haemodialysis patients: results of a randomised clinical trial. Vaccine. 2009; 27 (41): 5654–60. DOI: https://doi.org/10.1016/j.vaccine.2009.07.014

67. Yağci M., Acar K., Sucak G.T., Yamaç K., Haznedar R. Hepatitis B virus vaccine in lymphoproliferative disorders: a prospective randomized study evaluating the efficacy of granulocyte-macrophage colony stimulating factor as a vaccine adjuvant. Eur. J. Haematol. 2007; 79 (4): 292–96. DOI: https://doi.org/10.1111/j.1600-0609.2007.00912.x

68. Zhao W., Zhao G., Zhang S., Wang X., Yu X., Bin Wang B. Clearance of HBeAg and HBsAg of HBV in mice model by a recombinant HBV vaccine combined with GM-CSF and IFN-α as an effective therapeutic vaccine adjuvant. Oncotarget. 2018; 9 (76): 34 213–28. DOI: https://doi.org/10.18632/oncotarget.25789

69. Wang X., Dong A., Xiao J., Zhou X., Mi H., Xu H., et al. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice. Cell. Mol. Immunol. 2016; 13 (6): 850–61. DOI: https://doi.org/10.1038/cmi.2015.64

70. Chou H.Y., Lin X.Z., Pan W.Y., Wu P.Y., Chang C.M., Lin T.Y., et al. Hydrogel-delivered GM-CSF overcomes nonresponsiveness to hepatitis B vaccine through the recruitment and activation of dendritic cells. J. Immunol. 2010; 185 (9): 5468–75. DOI: https://doi.org/10.4049/jimmunol.1001875

71. Koc Ö.M., Savelkoul P.H.M., van Loo I.H.M., Peeter A., Oude Lashof A.M.L. Safety and immunogenicity of HBAI20 Hepatitis B vaccine in healthy naïve and nonresponding adults. J. Viral Hepat. 2018; 25 (9): 1048–56. DOI: https://doi.org/10.1111/jvh.12909

72. Симбирцев А.С., Петров А.В., Пигарева Н.В., Николаев А.Т. Новые возможности применения рекомбинантных цитокинов в качестве адъювантов при вакцинации. БИОпрепараты. Профилактика, диагностика, лечение. 2011; 1: 16–20. [Simbirtsev A.S., Petrov A.V., Pigareva N.V. Nikolaev A.T. New opportunities for using recombinant cytokines as adjuvants for vaccination. Biologics. Prevention, diagnosis, treatment. 2011; 1: 16–20. (in Russian)]

73. Wu B., Zou Q., Hu Y., Wang B. Interleukin-22 as a molecular adjuvant facilitates IL-17-producing CD8+ T cell responses against a HBV DNA vaccine in mice. Hum. Vaccin. Immunother. 2013; 9 (10): 2133–41. DOI: https://doi.org/10.4161/hv.26047

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»