Complex regulatory networks: relationships between metabolism, intracellular signaling pathways and epigenetic regulators in the control of Th1 functions

Abstract

The regulation of the immune response is one of the most important issues in immunology. There is still no complete understanding of how the immune system works. An ever-growing amount of research on this topic demonstrates that the problem is becoming interdisciplinary. Thus, it has been shown that both intracellular and extracellular metabolism control the functions of immune cells. In this review, we collected and systematized data on the relationship between metabolism, intracellular signaling pathways, and epigenetic regulation of the expression of genes that mediate cell functions in the group of lymphocytes - type 1 T-helpers (Th1). Using the example of this population of T-lymphocytes, which determines the cellular type of the immune response and performs a number of other functions, the review shows how individual metabolic pathways can affect the course of a certain type of immune response - reactions of cellular immunity. The principles of metabolic regulation of T-lymphocytes and potential strategies for therapeutic interventions targeting the Th1 cell population were also highlighted.

Keywords:immunity; immunometabolism; T-lymphocytes; Th1 cells; review

For citation: Kupriyanov S.V., Sinitskii A.I., Dolgushin I.I. Complex regulatory networks: relationships between metabolism, intracellular signaling pathways and epigenetic regulators in the control of Th1 functions. Immunologiya. 2021; 42 (5): 562-73. DOI: https://doi.org/10.33029/0206-4952-2021-42-5-562-573 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Литература/References

1. Delves P.J., Martin S.J., Burton D.R., Roitt I.M. Roitt’s Essential Immunology. 13th ed. Chichester: Wiley; Blackwell, 2017.

2. Güler M.L., Gorham J.D., Hsieh C.S., Mackey A.J., Steen R.G., Dietrich W.F., et al. Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development. Science. 1996; 271 (5251): 984–7. DOI: https://doi.org/10.1126/science.271.5251.984

3. Inge C., van der Meulen P.M., Bekker V., Verhard E.M., Breuning M.H., et al. Deletion of the entire interferon-γ receptor 1 gene causing complete deficiency in three related patients. J. Clin. Immunol. 2016; 36 (3): 195–203. DOI: https://doi.org/10.1007/s10875-016-0244-y

4. Ishigame H., Zenewicz L.A., Sanjabi S., Licona-Limón P., Nakayama M., Leonard W.J., et al. Excessive Th1 responses due to the absence of TGF-β signaling cause autoimmune diabetes and dysregulated Treg cell homeostasis. Proc. Natl Acad. Sci. USA. 2013; 110 (17): 6961–6. DOI: https://doi.org/10.1073/pnas.1304498110

5. Beurel E., Kaidanovich-Beilin O., Yeh W.I., Song L., Palomo V., Michalek S.M., et al. Regulation of Th1 cells and experimental autoimmune encephalomyelitis by glycogen synthase kinase-3. J. Immunol. 2013; 190 (10): 5000–11. DOI: https://doi.org/10.4049/jimmunol.1203057

6. Pearce E.L., Poffenberger M.C., Chang C.H., Jones R.G. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013; 342 (6155): 1242454. DOI: 10.1126/science.1242454

7. Будихина А.С., Пащенков М.В. Роль гликолиза в иммунном ответе. Иммунология. 2021; 42 (1): 5–20. DOI: https://doi.org/10.33029/0206-4952-2021-42-1-5-20 [Budikhina A.S., Pashchenkov M.V. The role of glycolysis in immune response. Immunologiya. 2021; 42 (1): 5–20. DOI: https://doi.org/10.33029/0206-4952-2021-42-1-5-20 (in Russian)]

8. Frauwirth K.A., Thompson C.B. Regulation of T lymphocyte metabolism. J. Immunol. 2004; 172 (8): 4661–5. DOI: https://doi.org/10.4049/jimmunol.172.8.4661

9. Kolev M., Dimeloe S., Le Friec G., Navarini A., Arbore G., Povoleri G.A. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity. 2015; 42 (6): 1033–47. DOI: https://doi.org/10.1016/j.immuni.2015.05.024

10. Zygmunt B.M., Węgrzyn A., Gajska W., Yevsa T., Chodaczek G., Guzmán C.A. Mannose Metabolism Is Essential for Th1 Cell Differentiation and IFN-γ Production. J. Immunol. 2018; 201 (5): 1400–11. DOI: https://doi.org/10.4049/jimmunol.1700042

11. Chang C.H., Curtis J.D., Maggi L.B. Jr, Faubert B., Villarino A.V., O’Sullivan D. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013; 153 (6): 1239–51. DOI: https://doi.org/10.1016/j.cell.2013.05.016

12. Patel C.H., Powell J.D. Warburg meets epigenetics. Science. 2016; 354 (6311): 419–20. DOI: https://doi.org/10.1126/science.aak9776

13. Peng M., Yin N., Chhangawala S., Xu K., Leslie C.S., Li M.O. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science. 2016; 354 (6311): 481–4. DOI: https://doi.org/10.1126/science.aaf6284

14. Nakaya M., Xiao Y., Zhou X., Chang J.H., Chang M., Cheng X., et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 2014; 40 (5): 692–705. DOI: https://doi.org/10.1016/j.immuni.2014.04.007

15. Cope A., Le Friec G., Cardone J., Kemper C. The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol. 2011; 32 (6): 278–86. DOI: https://doi.org/10.1016/j.it.2011.03.010

16. Richter A., Löhning M., Radbruch A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 1999; 190 (10): 1439–50. DOI: https://doi.org/10.1084/jem.190.10.1439

17. Hunter C.A., Ellis-Neyes L.A., Slifer T., Kanaly S., Grünig G., Fort M., et al. IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi. J. Immunol. 1997; 158 (7): 3311–6.

18. Gazzinelli R.T., Wysocka M., Hieny S., Scharton-Kersten T., Cheever A., Kühn R., et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J. Immunol. 1996; 157 (2): 798–805.

19. Jäger A., Dardalhon V., Sobel R.A., Bettelli E., Kuchroo V.K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 2009; 183 (11): 7169–77. DOI: https://doi.org/10.4049/jimmunol.0901906

20. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance. Cell. 2008; 133 (5): 775–87. DOI: https://doi.org/10.1016/j.cell.2008.05.009

21. Moore K.W., de Waal Malefyt R., Coffman R.L., O’Garra A. Interleukin-10 and the interleukin-10 receptor. Ann. Rev. Immunol. 2001; 19 (1): 683–765. DOI: https://doi.org/10.1146/annurev.immunol.19.1.683

22. Grazia Roncarolo M., Gregori S., Battaglia M., Bacchetta R., Fleischhauer K., Levings, M.K. Interleukin‐10‐secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 2006; 212 (1): 28–50. DOI: https://doi.org/10.1111/j.0105-2896.2006.00420.x

23. Trinchieri G. Interleukin-10 production by effector T cells: Th1 cells show self-control. J. Exp. Med. 2007; 204 (2): 239–43. DOI: https://doi.org/10.1084/jem.20070104

24. Astier A.L., Meiffren G., Freeman S., Hafler D.A. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J. Clin. Invest. 2006; 116 (12): 3252–7. DOI: https://doi.org/10.1172/JCI29251

25. Meiler F., Zumkehr J., Klunker S., Rückert B., Akdis C.A., Akdis M. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J. Exp. Med. 2008; 205 (12): 2887–98. DOI: https://doi.org/10.1084/jem.20080193

26. Perucha E., Melchiotti R., Bibby J.A., Wu W., Frederiksen K.S., Roberts C.A. The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells. Nature Commun. 2019; 10 (1): 1–13. DOI: https://doi.org/10.1038/s41467-019-08332-9

27. Xu M., Pokrovskii M., Ding Y., Yi R., Au C., Harrison O.J. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature. 2018; 554 (7692): 373–7. DOI: https://doi.org/10.1038/nature25500

28. Gabryšová L., Alvarez-Martinez M., Luisier R., Cox L.S., Sodenkamp J., Hosking C. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells. Nat. Immunol. 2018; 19 (5): 497–507. DOI: https://doi.org/10.1038/s41590-018-0083-5

29. Grossman Z., Paul W.E. Dynamic tuning of lymphocytes: physiological basis, mechanisms, and function. Ann. Rev. Immunol. 2015; 33: 677–713. DOI: https://doi.org/10.1146/annurev-immunol-032712-100027

30. Kidani Y., Bensinger S.J. Reviewing the impact of lipid synthetic flux on Th17 function. Curr. Opin. Immunol. 2017; 46: 121–6. DOI: https://doi.org/10.1016/j.coi.2017.03.012

31. Chang C.H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D., et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015; 162 (6): 1229–41. DOI: https://doi.org/10.1016/j.cell.2015.08.016

32. Abboud G., Choi S.C., Kanda N., Zeumer-Spataro L., Roopenian D.C., Morel L. Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis. Front. Immunol. 2018; 9: 1973. DOI: https://doi.org/10.3389/fimmu.2018.01973

33. Sproule T.J., Wilson J., Adkins E., Crocker B.P., Morel L., Roopenian D.C. AI-19 Metabolic inhibition by 2-deoxyglucose prevents and reverses lupus in mice. Lupus Sci. Med. 2016. DOI: http://doi.org/10.1136/lupus-2016-000179.19

34. Wilson J., Sproule T.J., Manandhar P., Marnik E., Morel L., Roopenian D. C. AI-03 Efficacy and safety of intermittent 2-deoxyglucose therapy in mouse models of lupus. Lupus Sci. Med. 2018. DOI: http://doi.org/10.1136/lupus-2018-lsm.3

35. Jia Y., Yang Q., Wang Y., Li W., Chen X., Xu T., et al. Hyperactive PI3Kδ predisposes naive T cells to activation via aerobic glycolysis programs. Cell. Mol. Immunol. 2021; 18 (7): 1783–97. DOI: https://doi.org/10.1038/s41423-020-0379-x

36. Galgani M., Matarese G. The Sweet Kiss Breaching Immunological Self-Tolerance. Trends Mol. Med. 2019; 25 (10): 819–20. DOI: https://doi.org/10.1016/j.molmed.2019.08.003

37. Ishii H., Tanabe S., Ueno M., Kubo T., Kayama H., Serada S., et al. IFN-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury. Cell Death Dis. 2013; 4 (7): e710. DOI: https://doi.org/10.1038/cddis.2013.234

38. Jung J., Zeng H., Horng T. Metabolism as a guiding force for immunity. Nat. Cell Biol. 2019; 21 (1): 85–93. DOI: https://doi.org/10.1038/s41556-018-0217-x

39. Nakaya M., Xiao Y., Zhou X., Chang J.H., Chang M., Cheng X., et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 2014; 40 (5): 692–705. DOI: https://doi.org/10.1016/j.immuni.2014.04.007

40. Sinclair L.V., Rolf J., Emslie E., Shi Y.B., Taylor P.M., Cantrell D.A. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 2013; 14 (5): 500–8. DOI: https://doi.org/10.1038/ni.2556

41. Mbongue J.C., Nicholas D.A., Torrez T.W., Kim N.S., Firek A.F., Langridge W.H. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines. 2015; 3 (3): 703–29. DOI: https://doi.org/10.3390/vaccines3030703

42. Xu H., Zhang G.X., Ciric B., Rostami A. IDO: a double-edged sword for TH1/TH2 regulation. Immunol. Lett. 2008; 121 (1): 1–6. DOI: https://doi.org/10.1016/j.imlet.2008.08.008

43. Jurgens B., Hainz U., Fuchs D., Felzmann T., Heitger A. Interferon-gamma-triggered indoleamine 2, 3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood. 2009; 114: 3235–43. DOI: https://doi.org/10.1182/blood-2008-12-195073

44. Fallarino F., Grohmann U., Vacca C., Bianchi R., Orabona C., Spreca A., et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002; 9: 1069–77. DOI: https://doi.org/10.1038/sj.cdd.4401073

45. Fallarino F., Grohmann U., You S., McGrath B.C., Cavener D.R., Vacca C., et al. The combined effects of tryptophan starvation and tryptophan catabolites downregulate T cell receptor -chain and induce a regulatory phenotype in naive T cells. J. Immunol. 2006; 176: 6752–61. DOI: https://doi.org/10.4049/jimmunol.176.11.6752

46. Park J., Kim M., Kang S.G., Jannasch A.H., Cooper B., Patterson J., Kim C.H. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 2015; 8 (1): 80–93. DOI: https://doi.org/10.1038/mi.2014.44

47. Atarashi K., Honda K. Microbiota in autoimmunity and tolerance. Curr. Opin. Immunol. 2011; 23: 761–8. DOI: https://doi.org/10.1016/j.coi.2011.11.002

48. Heikamp E.B., Powell J.D. Sensing the immune microenvironment to coordinate T cell metabolism, differentiation & function. Semin. Immunol. 2012; 24 (6): 414–20. DOI: https://doi.org/10.1016/j.smim.2012.12.003

49. Tullius S.G., Biefer H.R.C., Li S., Trachtenberg A.J., Edtinger K., Quante M., et al. NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat. Commun. 2014; 5 (1): 1–17. DOI: https://doi.org/10.1038/ncomms6101

50. Motomura Y., Kitamura H., Hijikata A., Matsunaga Y., Matsumoto K., Inoue H., et al. The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nat. Immunol. 2011; 12 (5): 450–9. DOI: https://doi.org/10.1038/ni.2020

51. Baixauli F., Acín-Pérez R., Villarroya-Beltrí C., Mazzeo C., Nuñez-Andrade N., Gabandé-Rodriguez E., et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 2015; 22 (3): 485–98. DOI: https://doi.org/10.1016/j.cmet.2015.07.020

52. Lu W., Zhang Y., McDonald D.O., Jing H., Carroll B., Robertson N., et al. Dual proteolytic pathways govern glycolysis and immune competence. Cell. 2014; 159: 1578–90. DOI: https://doi.org/10.1016/j.cell.2014.12.001

53. Rolf J., Zarrouk M., Finlay D.K., Foretz M., Viollet B., Cantrell D.A., et al. AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. Eur. J. Immunol. 2013; 43: 889–96. DOI: http://dx.doi.org/10.1002/eji.201343483

54. Gualdoni G.A., Mayer K.A., Göschl L., Boucheron N., Ellmeier W., Zlabinger G.J. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J. 2016; 30: 3800–9. DOI: https://doi.org/10.1096/fj.201600522R

55. Gerriets V.A., Rathmell J.C. Metabolic pathways in T cell fate and function. Trends Immunol. 2012; 33 (4): 168–73. DOI: https://doi.org/10.1016/j.it.2012.01.010

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»