Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation

Abstract

Introduction. Bronchial asthma (BA) is a chronic inflammatory disease of the airways. For a long time, it was believed that BA developed exclusively according to the Th2-dependent mechanism, however, to date, several phenotypes of the disease have been distinguished, one of which is neutrophilic BA. Neutrophilic BA is characterized by resistance to standard corticosteroid therapy, that need to search for new way of treatment. Neutrophilic inflammation of the lungs is developed under activation of IL-6/STAT3-pathway, that makes the molecular components of this pathway to be the promising targets. One of the technologies by which genes expression can be regulated is RNA interference.

The aim of this study was to evaluate the effects of local suppression of Stat3 gene expression in a mouse model of neutrophilic BA.

Material and methods. During the development of BA features mice were inhaled with a complex of small interfering RNA (siRNA) and a carrier peptide. After the course of inhalations, the severity of BA manifestations was assessed: the level of allergen-specific antibodies, changes in bronchial hyperreactivity, the cellular composition of the bronchoalveolar lavage (BAL) fluid, histopathological alterations in the lungs.

Results. 5 variants of siRNA against Stat3 gene were designed. In vitro experiments established that the variant siSTAT3-1426 significantly (5 times) reduced the expression of the target gene. A complex of siRNA and a carrier peptide LTP down-regulated the expression of Stat3 and Il17a genes in Th17-lymphocytes. In vivo studies in a mouse model of neutrophilic BA revealed, that the inhalations with the complex led to a 2-fold inhibition of Stat3 gene expression in BAL fluid cells, 3-fold decrease in neutrophilic infiltration of the lungs and recovery of the thickness of the airway walls.

Conclusion. The complex of siRNA targeted to Stat3 gene and the carrier peptide was developed. The inhalations with the complex decreased Th17-dependent neutrophilic inflammation of the lungs in neutrophilic BA model in mice, that can be a promising approach to the therapy of neutrophilic corticosteroid-resistant BA.

Keywords:neutrophilic bronchial asthma; RNA interference; Stat3

For citation: Nikolskii A.A., Shilovskiy I.P., Yumashev K.V., Vishniakova L.I., Barvinskaia E.D., Kovchina V.I., Korneev A.V., Turenko V.N., Kaganova M.M., Brylina V.E., Nikonova A.A., Kozlov I.B., Kofiadi I.A., Sergeev I.V., Maerle A.V., Petukhova O.A., Kudlay D.A., Khaitov M.R. Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation. Immunologiya. 2021; 42 (6): 600-14. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-600-614 (in Russian)

Funding. The study was supported by RFBR, project number 20-34-90151.

Conflict of interests. The authors declare no conflict of interests.

References

1. GINA Committee. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2020. URL: https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-Appendix_final-wms.pdf (date of access October 14, 2021)

2. Soriano J.B., Abajobir A.A., Abate K.H., Abera S.F., et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017; 5: 691–706. DOI: http://doi.org/10.1016/S2213-2600(17)30293-X

3. Avdeev S.N., Nenasheva N.M., Zhudenkov K.V., Petrakovskaya V.A., Izyumova G.V. Prevalence, morbidity, phenotypes and other characteristics of severe bronchial asthma in Russian Federation. Pul’monologiya. 2018; 28: 341–58. DOI: http://doi.org/10.18093/0869-0189-2018-28-3-341-358 (in Russian)

4. Moote W., Kim H., Ellis A.K. Allergen-specific immunotherapy. Allergy Asthma Clin. Immunol. 2018; 14: 1–10. DOI: http://doi.org/10.1186/s13223-018-0282-5

5. Pavlova K.S., Kurbacheva O.M., Galitskaya M.A., Smirnov D.S. Actual conception of allergen-specific immunotherapy mechanisms, potential biomarkers of efficacy and ways of enhancement. Rossiyskiy allergologicheskiy zhurnal. 2017; 14: 5–17. DOI: http://doi.org/10.36691/RJA290 (in Russian)

6. Corren J., Lemanske R.F., Hanania N.A., Korenblat P.E., Parsey M.V., Arron J.R., Harris J.M., Scheerens H., Wu L.C., Su Z., Mosesova S., Eisner M.D., Bohen S.P., Matthews J.G. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 2011; 365: 1088–98. DOI: http://doi.org/10.1056/NEJMoa1106469

7. Wenzel S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 2012; 18: 716–25. DOI: http://doi.org/10.1038/nm.2678

8. Seys S.F., Lokwani R., Simpson J.L., Bullens D.M.A. New insights in neutrophilic asthma. Curr. Opin. Pulm. Med. 2019; 25: 113–20. DOI: http://doi.org/10.1097/MCP.0000000000000543

9. Liu W., Liu S., Verma M., Zafar I., Good J.T., Rollins D., Groshong S., Gorska M.M., Martin R.J., Alam R. Mechanism of TH2/TH17-predominant and neutrophilic TH2/TH17-low subtypes of asthma. J. Allergy Clin. Immunol. 2017; 139: 1548–58. DOI: http://doi.org/10.1016/j.jaci.2016.08.032

10. Chaudhry A., Rudra D., Treuting P., Samstein R.M., Liang Y., Kas A., Rudensky A.Y. CD4+ regulatory T cells control Th17 responses in a STAT3-dependent manner. Science. 2009; 326: 986–91. DOI: http://doi.org/10.1126/science.1172702

11. Halwani R., Sultana A., Vazquez-Tello A., Jamhawi A., Al-Masri A.A., Al-Muhsen S. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. J. Asthma. 2017; 54: 893–904. DOI: http://doi.org/10.1080/02770903.2017.1283696

12. Shilovskiy I.P., Nikolskii A.A., Kurbacheva O.M., Khaitov M.R. Modern view of neutrophilic asthma molecular mechanisms and therapy. Biochemistry (Mosc). 2020; 85: 854–68. DOI: http://doi.org/10.1134/S0006297920080027

13. Saw P.E., Song E.W. siRNA therapeutics: a clinical reality. Sci. China Life Sci. 2020; 63: 485–500. DOI: http://doi.org/10.1007/s11427-018-9438-y

14. Nikam R.R., Gore, K.R. Journey of siRNA: clinical developments and targeted delivery. Nucleic Acid Ther. 2018; 28: 209–24. DOI: http://doi.org/10.1089/nat.2017.0715

15. Koloskova O.O., Nosova A.S., Sebyakin Y.L., Ilyukhina A.A., Shilovskiy I.P., Khaitov M.R. Liposomal siRNA delivery systems (review). Russ. J. Biopharm. 2017; 9: 3–10.

16. Kozhikhova K.V, Andreev S.M., Shilovskiy I.P., Timofeeva A.V, Gaisina A.R., Shatilov A.A., Turetskiy E.A., Andreev I.M., Smirnov V.V, Dvornikov A.S., Khaitov M.R. A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells. Org. Biomol. Chem. 2018; 16: 8181–90. DOI: http://doi.org/10.1039/c8ob02039f

17. Kanasty R., Dorkin J.R., Vegas A., Anderson D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013; 12: 967–77. DOI: http://doi.org/10.1038/nmat3765

18. Shilovskiy I.P., Nikolskii A.A., Kovchina V.I., Bolotova S.I., Vishniakova L.I., Sokolova A.R., Barvinskaya E.D., Khaitov M.R. Activation of Th17-immune response in a mouse model of neutrophilic asthma. Immunologiya. 2019; 40: 5–15. DOI: http://doi.org/10.24411/0206-4952-2019-16001 (in Russian)

19. Lu Z.J., Mathews D.H. OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res. 2008; 36: 104–8. DOI: http://doi.org/10.1093/nar/gkn250

20. Shilovskiy I.P., Sundukova M.S., Babakhin А.А., Gaisina A.R., Maerle A.V., Sergeev I.V., Nikolskiy A.A., Barvinckaya E.D., Kovchina V.I., Kudlay D.A., Nikonova A.A., Khaitov M.R. Experimental protocol for development of adjuvant-free murine chronic model of allergic asthma. J. Immunol. Methods. 2019; 468: 10–9. DOI: http://doi.org/10.1016/j.jim.2019.03.002

21. Chang H.S., Lee T.H., Jun J.A., Baek A.R., Park J.S., Koo S.M., Kim Y.K., Lee H.S., Park C.S. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev. Respir. Med. 2017; 11: 29–40. DOI: http://doi.org/10.1080/17476348.2017.1268919

22. Newcomb D.C., Peebles R.S. Th17-mediated inflammation in asthma. Curr. Opin. Immunol. 2013; 25: 755–760. DOI: http://doi.org/10.1016/j.coi.2013.08.002

23. Steinke J.W., Borish L. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir. Res. 2001; 2: 66–70. DOI: http://doi.org/10.1186/rr40

24. Miyajima I., Dombrowicz D., Martin T.R., Ravetch J.V, Kinet J.P., Galli S.J. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J. Clin. Invest. 1997; 99: 901–14. DOI: http://doi.org/10.1172/JCI119255

25. Oettgen H.C., Martin T.R., Wynshaw-Boris A., Deng C., Drazen J.M., Leder P. Active anaphylaxis in IgE-deficient mice. Nature. 1994; 370: 367–70. DOI: http://doi.org/10.1038/370367a0

26. Juliano R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016; 44: 6518–48. DOI: http://doi.org/10.1093/nar/gkw236

27. Lim H., Cho M., Choi G., Na H., Chung Y. Dynamic control of Th2 cell responses by STAT3 during allergic lung inflammation in mice. Int. Immunopharmacol. 2015; 28: 846–53. DOI: http://doi.org/10.1016/j.intimp.2015.03.051

28. Simeone-Penney M.C., Severgnini M., Tu P., Homer R.J., Mariani T.J., Cohn L., Simon A.R. Airway epithelial STAT3 is required for allergic inflammation in a murine model of asthma. J. Immunol. 2007; 178: 6191–9. DOI: http://doi.org/10.4049/jimmunol.178.10.6191

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»