Substantiation of the strategy of nonspecific immunoprophylaxis of active EBV infection

Abstract

Introduction. The relevance of the infection caused by the Epstein-Barr virus (EBV) is determined by its ubiquitous spread, the increase in morbidity over the past decades, the lifelong persistence of the pathogen in the host body, a wide range of complications that form somatic pathology. The lack of effective means of therapy and specific prevention makes it necessary to find ways to manage the epidemic process with the help of drugs that have a nonspecific effect on the immune system.

The aim of the work was to substantiate the strategy of non-specific immunoprophylaxis of active EBV-infection.

Material and methods. A systematic review of scientific publications was carried out using the bibliographic databases PubMed, CochraneReviews/CochraneLibrary, eLibrary, Cyberleninka. The development of a strategy for the prevention of EBV infection was carried out on the basis of data on the pathogenesis of the disease and the mechanism of action of drugs.

Results. Potential means of non-specific immunoprophylaxis of active EBV infection can be bacterial lysates and their components, interferon inducers, recombinant interferons, interleukin-2 and -7, immunomodulators of plant origin, vitamins and antioxidants, pre- and probiotics. Taking into account the peculiarities of EBV infection, three directions of prevention are identified (emergency, including post-contact; prevention of complications of active EBV infection; prevention of reactivation of chronic EBV infection), for each of which potential groups of drugs are proposed.

Conclusion. The analysis of domestic and foreign publications made it possible to justify the strategy of non-specific immunoprophylaxis of active EBV infection, based on the impact on different parts of the body’s immune defense in relation to different pathogenetic stages of the disease. The use of the proposed strategy requires further in-depth study.

Keywords:non-specific immunoprophylaxis; Epstein-Barr virus; EBV infection; immunomodulators; probiotics; prebiotics

For citation: Solomay T.V., Semenenko T.A., Ilina N.I. Substantiation of the strategy of nonspecific immunoprophylaxis of active EBV infection. Immunologiya. 2021; 42 (6): 686-96. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-686-696 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Solomay T.V., Semenenko T.A., Bloh A.I. The prevalence of antibodies to the Epstein–Barr virus in different age groups of the population of Europe and Asia: a systematic review and meta-analysis. Zdravoohranenie Rossijskoj Federacii. 2021; 65 (3): 276–86. DOI: https://doi.org/10.47470/0044-197X-2021-65-3-276-286 (in Russian)

2. Solomay T.V., Semenenko T.A., Filatov N.N., Vedunova S.L., Lavrov V.F., Smirnova D.I., Grachjova A.V., Fajzuloev E.B. Reactivation of infection caused by the Epstein–Barr virus (Herpesviridae: Lymphocryptovirus, HHV-4), against the background of COVID-19: epidemiological features. Voprosy Virusologii (Problems of Virology, Russian journal). 2021; 66 (2):152–61. DOI: https://doi.org/10.36233/0507-4088-40 (in Russian)

3. Solomay T.V., Semenenko T.A., Filatov N.N., Kostinov M.P., Ilina N.I. Epstein–Barr virus: development of vaccines. Immunologija. 2020; 41 (4): 381–90. DOI: https://doi.org/10.33029/0206-4952-2020-41-3-381-390 (in Russian)

4. Andrei G., Trompet E., Snoeck R. Novel Therapeutics for Epstein–Barr Virus. Molecules. 2019; 24 (5): 997. DOI: https://doi.org/10.3390/molecules24050997

5. Usenko D.V., Gorelov A.V. Combined therapy of inflammatory diseases of the oropharynx in children. Medicinskij sovet. 2016; 1: 54–7. (in Russian)

6. Gur'janova S.V., Haitov R.M. Glucosaminylmuramyldipeptide in the treatment and prevention of infectious diseases. Infekcionnye bolezni: novosti, mnenija, obuchenie. 2020; 9 (3): 79–86. DOI: https://doi.org/10.33029/2305-3496-2020-9-3-79-86 (in Russian)

7. Haitov R.M. Immunomodulators: myths and reality. Immunologija. 2020; 41 (2): 101–6. DOI: https://doi.org/10.33029/0206-4952-2020-41-2-101-106 (in Russian)

8. Immunotherapy. A guide for doctors / Edited by R.M. Haitov, R.I. Ataullahanov, A.E. Shul'zhenko. Moskva, izdatel'skaja gruppa «GEOTAR-Media», 2020. 702 p. (in Russian)

9. Zujkova I.N., Shul'zhenko A.E., Shubelko R.V. Correction of cytokine disorders in patients with chronic recurrent herpesvirus infection. Farmateka. 2014; 10: 48–54. (in Russian)

10. Rakityanskaya I.A., Ryabova T.S., Kalashnikova A.A. Influence of ingaron on the dynamics of interferon-α and -γ production and on the manifestation of clinical symptoms in patients with chronic virus Eрsthtein–Barr infection. Voprosy Virusologii (Problems of Virology, Russian journal). 2019; 64 (1): 23–9. (in Russian)

11. Kearney S.C., Dziekiewicz M., Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Ann Allergy Asthma Immunol. 2015; 114 (5): 364–9. DOI: https://doi.org/10.1016/j.anai.2015.02.008

12. Pinegin B.V., Haitov R.M. Modern principles of creating immunotropic drugs. Immunologija. 2019; 40 (6): 57–62. DOI: https://doi.org/10.24411/0206-4952-2019-16008 (in Russian)

13. Esposito S., Bianchini S., Polinori I., Principi N. Impact of OM-85 Given during Two Consecutive Years to Children with a History of Recurrent Respiratory Tract Infections: A Retrospective Study. Int J Environ Res Public Health. 2019; 16 (6): 1065. DOI: https://doi.org/10.3390/ijerph16061065

14. Bousquet J., Oliveri D. Role of ribomunyl((r)) in the prevention of recurrent respiratory tract infections in adults : overview of clinical results. Treat Respir Med. 2006; 5 (5): 317–24. DOI: https://doi.org/10.2165/00151829-200605050-00003

15. Solomay T.V., Semenenko T.A., Isaeva E.I., Vetrova E.N., Chernyshova A.I., Romenskaja Je.V., Karazhas N.V. COVID-19 and the risk of reactivation of herpesvirus infection. Jepidemiologija i infekcionnye bolezni. Aktual'nye voprosy. 2021; 11 (2): 55–62. DOI: https://doi.org/10.18565/epidem.2021.11.2.55-62 (in Russian)

16. Majorov R.V., Ozerova I.V., Nezhdanova E.V., Samoukina A.M. Improvement of methods of preventive measures to reduce the frequency of respiratory diseases in school-age children. Vestnik novyh medicinskih tehnologij. Jelektronnoe izdanie. 2020; 1: 36–42. DOI: https://doi.org/10.24411/2075-4094-2020-16579 (in Russian)

17. Majorov R.V., Getmanov S.D., Malysheva E.A. Comparison of the effectiveness of antiviral drugs for the treatment of Epstein–Barr virus in frequently ill school-age children. Vrach-aspirant. 2016; 2 (1): 140–5. (in Russian)

18. Garashhenko T.I., Sel'kova E.P., Karneeva O.V., Garashhenko M.V., Oganesjan A.S. Bioregulatory therapy in the treatment and prevention of upper respiratory tract diseases in children. Medicinskij sovet. 2020; (18): 32–41. DOI: https://doi.org/10.21518/2079-701X-2020-18-32-41 (in Russian)

19. Sobchak D.M., Rjumin A.M., Shhuklina T.V., Butina T.Ju., Gor'kova S.S. Study of the content of immune response mediators in patients with prolonged and cyclic course of EBV-infectious mononucleosis and their changes during immunocorrective therapy. Medicinskij al'manah. 2018; 4 (55): 105–9. (in Russian)

20. Chujkova K.I., Popova O.A. Improving the therapy of infectious mononucleosis in children. Detskie infekcii. 2012; 4: 48–51. (in Russian)

21. Chugunova O.L., Meljohina E.V., Muzyka A.D. Rational approach to the choice of antiviral therapy for acute respiratory diseases in children. Pediatrija. Consilium Medicum. 2020; 1: 52–7. DOI: https://doi.org/10.26442/26586630.2020.1.200082 (in Russian)

22. Semenenko T.A., Selkova E.P., Gotvjanskaja T.P., Gajdarenko A.D., Polezhaeva N.A., Evseeva L.F., Nikolaeva O.G. Indicators of the immune status in specific and non-specific prevention of influenza in the elderly. Zhurnal mikrobiologii, jepidemiologii i immunobiologii. 2005; 6: 24–8. (in Russian)

23. Romancov M.G., Sel'kova E.P., Garashhenko M.V., Semenenko T.A., Shul'djakov A.A., Kondrat'eva E.I., Tjuteva E.Ju., Kovalenko A.L. Increasing the natural resistance of children for the prevention of influenza and ARVI (results of multicenter randomized studies) Antibiotiki i himioterapija. 2009; 54 (9-10): 37–41. (in Russian)

24. Melehina E.V., Muzyka A.D., Ponezheva Zh.B., Gorelov A.V. Experience of using the drug inosine pranobex in children with recurrent respiratory infections. RMZh. 2021; 6: 27–32. (in Russian)

25. Shamsheva O.V., Novosad E.V., Polesko I.V., Uchajkin V.F., Malinovskaja V.V., Semenenko T.A. External forms of recombinant interferon alpha-2B-ointment and gel in the complex therapy of acute respiratory viral infections and influenza in children. Detskie infekcii.2020; 19 (2(71)): 42–6. (in Russian)

26. Fil'kina O.M., Vorob'eva E.A., Kudrjashova I.L., Malyshkina A.I. The effectiveness of prevention of acute respiratory viral infections in children's homes in contact with sick children. Rossijskij pediatricheskij zhurnal. 2015; 2: 59–62. (in Russian)

27. Timchenko V.N., Bannova S.L., Pavlova N.V., Timchenko V.N., Bannova S.L., Pavlova N.V., Pavlova E.B., Kaplina T.A., Fedorova A.V., Bulina O.V., Balashov A.L., Hakizimana Zh.K. EBV-mononucleosis at the hospital stage: clinical characteristics and etiotropic therapy in children of various ages. Pediatr. 2018; 9 (6): 77–82. DOI: https://doi.org/10.17816/PED9677-82 (in Russian)

28. Martynova G.P., Ikkes L.A., Bogvilene Ja.A. Clinical efficacy of the combined use of two dosage forms of recombinant interferon α-2b in the treatment of infectious mononucleosis in children. Detskie infekcii. 2019; 18 (1): 42–7. https://doi.org/10.22627/2072-8107-2019-18-1-42-47 (in Russian)

29. Hlynina Ju.O., Arova A.A., Karpuhina O.A. Evaluation of the effectiveness and safety of recombinant alpha-interferon (Herpferon) in patients with clinical symptoms of infectious mononucleosis. Rossijskij vestnik perinatologii i pediatrii. 2016; 4: 257–8. (in Russian)

30. Hoshino Y., Katano H., Zou P., Hohman P., Marques A., Tyring S.K., Follmann D., Cohen J.I. Long-term administration of valacyclovir reduces the number of Epstein–Barr virus (EBV)-infected B cells but not the number of DNA copies per B cell in healthy volunteers. J Virol. 2009; 83 (22): 11857–61. DOI: https://doi.org/10.1128/JVI.01005-09

31. Gulomov Z.S., Varjushina E.A., Janov Ju.K., Simbircev A.S. Changes in the indicators of local immunity of the maxillary sinuses in the treatment of patients with chronic purulent rhinosinusitis with the drug "Betaleikin". Vestnik Avicenny. 2009; 3 (40): 84–9. (in Russian)

32. Hashimoto M., Im S.J., Araki K., Ahmed R. Cytokine-Mediated Regulation of CD8 T-Cell Responses During Acute and Chronic Viral Infection. Cold Spring Harb Perspect Biol. 2019; 11 (1): a028464. DOI: https://doi.org/10.1101/cshperspect.a028464

33. Vaganov P.D., Doneckova A.D., Nikonova M.F., Janovskaja Je.Ju., Petrjajkina E.E., Pugacheva I.A., Samsonovich I.R., Jarilin A.A. The effect of tactivin therapy on T-lymphopoiesis in thymomegaly in young children with acute obstructive bronchitis. Rossijskij medicinskij zhurnal. 2015; 21 (4): 18–20. (in Russian)

34. Kuz'menko L.G., Lopushanskaja N.A., Kiseljova N.M., Arzjamova V.V. Immediate and long-term results of treatment with thymus preparations in children with various diseases. Detskie infekcii. 2005; 4: 42–5. (in Russian)

35. Havinson V.H., Kuznik B.I., Sturov V.G., Gladkij P.A. The use of the drug Timalin® in respiratory diseases. Prospects for use in COVID-19. RMZh. 2020; 9: 24–30. (in Russian)

36. Senoner T., Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients. 2019; 11 (9): 2090. DOI: https://doi.org/10.3390/nu11092090

37. Chaban T.V., Zhurakovskaja N.A. The state of the processes of lipid peroxidation, the antioxidant system and the platelet link of hemostasis in patients with infectious mononucleosis. Klinicheskaja medicina. 2014; 2: 52–6. (in Russian)

38. Lassoued S., Ben Ameur R., Ayadi W., Gargouri B., Ben Mansour R., Attia H. Epstein–Barr induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol Cell Biochem. 2008; 313 (1-2): 179–86. DOI: https://doi.org/10.1007/s11010-008-9755-z

39. Mikirova N., Hunninghake R. Effect of high dose vitamin C on Epstein-Barr viral infection. Med Sci Monit. 2014; 20: 725–32. DOI: https://doi.org/10.12659/MSM.890423

40. Sista N.D, Pagano J.S., Liao W., Kenney S. Retinoic acid is a negative regulator of the Epstein–Barr virus protein (BZLF1) that mediates disruption of latent infection. Proc Natl Acad Sci USA. 1993; 90: 3894–8. DOI: https://doi.org/10.1073/PNAS.90.9.3894

41. Nathan C., Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nature Reviews Immunology. 2013; 13 (5): 349–61.

42. Liu W., Shi L.J, Li S.G. The Immunomodulatory Effect of Alpha-Lipoic Acid in Autoimmune Diseases. Biomed Res Int. 2019; 2019: 8086257. DOI: https://doi.org/10.1155/2019/8086257

43. Kataev A.V. The effect of benzimidazole derivatives on the formation of oxidative stress under the action of physical activity. Permskij medicinskij zhurnal. 2017; 6: 81–6. DOI: https://doi.org/10.17816/pmj34681-86 (in Russian)

44. Basharina O.V., Savostina I.E., Artjuhov V.G., Zuev N.P., Kaduckaja L.A. The effect of dibazole on the enzymes of the antioxidant system in blood lymphocytes of donors. V sbornike: Innovations in life sciences. Sbornik materialov II mezhdunarodnogo simpoziuma. 2020: 37–8. (in Russian)

45. Kudrjavceva O.A., Rahmanov R.S., Gadzhiibragimov D.A. Comparative analysis of the effectiveness of the use of drugs that increase the natural resistance of the body. Medicinskij al'manah. 2009; 1 (6): 129. (in Russian)

46. Truhan D.I., Bagisheva N.V., Mordyk A.V., Nebesnaja E.Ju. Sodium Aminodihydrophthalazinedione in the prevention, treatment and rehabilitation of patients with respiratory diseases. Consilium Medicum. 2021; 23 (3): 296–303. DOI: https://doi.org/10.26442/20751753.2021.3.200839 (in Russian)

47. Kerr J.R. Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol. 2019; 72 (10): 651–8. DOI: https://doi.org/10.1136/jclinpath-2019-205822

48. Ishrefova L.R., Ljalina L.V., Lioznov D.A., Matochkina O.V., Davydova T.Ju., Zaharova L.E. Justification of non-specific prevention of acute respiratory viral infections in children's groups. Infekcija i immunitet. 2016; 6 (2): 184–8. DOI: https://doi.org/10.15789/2220-7619-2016-2-184-188 (in Russian)

49. Mar'in G.G., Valevskij V.V., Gruzdeva O.A., Sokolov M.A., Bagdasarjan M.B. Experience of using drugs that increase nonspecific resistance of the body in the prevention of infections in organized groups. Medicinskij al'manah. 2012; 3 (22): 151–5. (in Russian)

50. Butko D.Ju., Barancevich E.R., Voznjuk I.A., Danilenko L.A., Starikov S.M. The possibilities of using combined herbal medicines in the treatment and rehabilitation of patients with acute respiratory viral infections in the conditions of the COVID-19 pandemic. Akademija mediciny i sporta. 2020; 1 (2): 23–7. DOI: https://doi.org/10.15829/2712-7567-2020-2-11 (in Russian)

51. Kaljuzhin O.V., Afanas'ev S.S., Bykov A.S. Probiotics as stimulants of the anti-infectious immune response in the respiratory tract. Terapevticheskij arhiv. 2016; 5: 118–24. DOI: https://doi.org/10.17116/terarkh2016885118-124 (in Russian)

52. Tsai Y.L., Lin T.L., Chang C.J., Wu T.R., Lai W.F., Lu C.C., Lai H.C. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci. 2019; 26 (1): 3. DOI: https://doi.org/10.1186/s12929-018-0493-6

53. Westfall S., Caracci F., Zhao D., Wu Q.L., Frolinger T., Simon J., Pasinetti G.M. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun. 2021; 91: 350–368. DOI: https://doi.org/10.1016/j.bbi.2020.10.013

54. Bosco N., Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021; 19: 1–15. DOI: https://doi.org/10.1038/s41435-021-00126-8. Online ahead of print.

55. Solomay T.V., Semenenko T.A., Karazhas N.V., Rybalkina T.N., Kornienko M.N., Bosh'yan R.E., Golosova S.A., Ivanova I.V. Assessing risks of infection with herpes viruses during transfusion of donor blood and its components. Health Risk Analysis. 2020; 2: 135–42. DOI: https://doi.org/10.21668/health.risk/2020.2.15.eng

56. Shevchenko A.V., Medvedeva O.A., Muhina A.Ju., Korolev V.A., Kaluckij P.V. Composition of the normobiocenosis of the large intestine and the prooxidant-antioxidant balance of blood plasma, colonocytes in experimental dysbiosis and the use of the probiotic Rioflor Immuno Neo. Zhurnal mikrobiologii, jepidemiologii i immunobiologii. 2018; 4: 27–33. (in Russian)

57. Feklisova L.V., Celipanova E.E., Galkina L.A., Savickaja N.A., Voropaeva E.A., Pozhalostina L.V., Maculevich T.V. Results of a multicenter study of the use of a combined probiotic drug in patients with respiratory infectious diseases. Detskie infekcii. 2010; 3: 53–7. (in Russian)

58. Strasser B., Geiger D., Schauer M., Gostner J.M., Gatterer H., Burtscher M., Fuchs D. Probiotic Supplements Beneficially Affect Tryptophan-Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients. 2016; 8 (11): 752. DOI: https://doi.org/10.3390/nu8110752

59. Hooykaas M.J.G., van Gent M., Soppe J.A., Kruse E., Boer I.G.J, van Leenen D., Groot Koerkamp M.J.A, Holstege F.C.P, Ressing M.E., Wiertz E.J.H.J., Lebbink R.J. MicroRNA BART16 Suppresses Type I IFN Signaling. J Immunol. 2017; 198 (10): 4062–73. DOI: https://doi.org/10.4049/jimmunol.1501605

60. Ignatova G.L., Antonov V.N. The relevance of the prevention of influenza and pneumococcal infection during the ongoing COVID-19 pandemic. Consilium Medicum. 2021; 23 (3): 275–9. DOI: https://doi.org/10.26442/20751753.2021.3.200765 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»