Immune response to Helicobacter pylori

Abstract

H. pylori causes pathologies of different severity: asymptomatic infection, gastritis, gastric and duodenal ulcers, adenocarcinoma and MALT-lymphoma. According to available data, the form of the disease depends both on the virulence of the pathogen and on the characteristics of the immune response. It should be noted that in H. pylori infection the role of individual cell groups of the immune system is very ambiguous. Thus, pro-inflammatory T cell subgroups have a certain anti-infectious potential, but at the same time make a significant contribution to the development of inflammatory and destructive processes, while regulatory T cells weaken the clinical manifestations of infection, but contribute to the persistence of the pathogen. The review presents data on the role of various cells involved in the immune response to H. pylori, as well as information on the pathogenesis of lymphomas associated with H. pylori infection.

Keywords:Helicobacter pylori; immune response; inflammation; T-helper cells; regulatory T cells; cytokines; B cells; lymphoma

For citation: Talayev V.Yu., Voronina E.V., Zaichenko I.Ye., Babaykina О.N. Immune response to Helicobacter pylori. Immunologiya. 2021; 42 (6): 697-705. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-697-705 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

48. Leber A., Abedi V., Hontecillas R., Viladomiu M., Hoops S., Ciupe S., et al. Bistability analysis of CD4C T follicular helper and regulatory cells during Helicobacter pylori infection. J. Theor. Biol. 2016; 398: 74–84. DOI: https://doi.org/10.1016/j.jtbi.2016.02.036

49. Mohammadi M., Nedrud J., Redline R., Lycke N., Czinn S.J. Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology. 1997; 113 (6): 1848–57. DOI: https://doi.org/10.1016/S0016-5085(97)70004-0

50. Garhart C.A., Nedrud J.G., Heinzel F.P., Sigmund N.E., Czinn S.J. Vaccine-induced protection against Helicobacter pylori in mice lacking both antibodies and interleukin-4. Infect. Immun. 2003; 71 (6): 3628–33. DOI: https://doi.org/10.1128/IAI.71.6.3628-3633.2003

51. Li R., Jiang X.X., Zhang L.F., Liu X.M., Hu T.Z., Xia X.J., Li M., Xu C.X. Group 2 innate lymphoid cells are involved in skewed type 2 immunity of gastric diseases induced by Helicobacter pylori infection. Mediators Inflamm. 2017; 2017: 4927964. DOI: https://doi.org/10.1155/2017/4927964

52. Wang S.K., Zhu H.F., He B.S., et al. CagA+ H pylori infection is associated with polarization of T helper cell immune responses in gastric carcinogenesis. World J. Gastroenterol. 2007; 13 (21): 2923–31. DOI: https://doi.org/10.3748/wjg.v13.i21.2923

53. Lundgren A., Strömberg E., Sjöling A., Lindholm C., Enarsson K., Edebo A., et al. Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect. Immun. 2005; 73 (1): 523–31. DOI: https://doi.org/10.1128/IAI.73.1.523-531.2005

54. Cheng H.H., Tseng G.Y., Yang H.B., Wang H.J., Lin H.J., Wang W.C. Increased numbers of Foxp3-positive regulatory T cells in gastritis, peptic ulcer and gastric adenocarcinoma. World J. Gastroenterol. 2012; 18: 34–43.

55. Arnold I.C., Lee J.Y., Amieva M.R., Roers A., Flavell R.A., Sparwasser T., Müller A. Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia. Gastroenterology. 2011; 140 (1): 199–209. DOI: https://doi.org/10.1053/j.gastro.2010.06.047

56. Harris, P.R., Wright S.W., Serrano C., Riera F., Duarte I., Torres J., et al. Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology. 2008; 134: 491–9. DOI: https://doi.org/10.1053/j.gastro.2007.11.006

57. Robinson K., Kenefeck R., Pidgeon E.L., Shakib S., Patel S., Polson R.J., Zaitoun A.M., Atherton J.C. Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut. 2008; 57 (10): 1375–85. DOI: https://doi.org/10.1136/gut.2007.137539

58. Sobala G.M., Crabtree J.E., Dixon M.F., Schorah C.J., Taylor J.D., Rathbone B.J., Heatley R.V., Axon A.T. Acute Helicobacter pylori infection: clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut. 1991; 32: 1415–8. DOI: https://doi.org/10.1136/gut.32.11.1415

59. Isaacson P.G., Wotherspoon A.C., Diss T., Pan L.X. Follicular colonization in B-cell lymphoma of mucosa-associated lymphoid tissue. Am. J. Surg. Pathol. 1991; 15 (9): 819–28. DOI: https://doi.org/10.1097/00000478-199109000-00001

60. Bacon C.M., Du M.Q., Dogan A. Mucosa-associated lymphoid tissue (MALT) lymphoma: a practical guide for pathologists. J. Clin. Pathol. 2007; 60 (4): 361–72. DOI: https://doi.org/10.1136/jcp.2005.031146

61. Floch P., Mégraud F., Lehours P. Helicobacter pylori strains and gastric MALT lymphoma. Toxins (Basel). 2017; 9 (4): 132. DOI: https://doi.org/10.3390/toxins9040132

62. Suarez F., Lortholary O., Hermine O., Lecuit M. Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood. 2006; 107 (8): 3034–44. DOI: https://doi.org/10.1182/blood-2005-09-3679

63. Troppan K., Wenzl K., Neumeister P., Deutsch A. Molecular pathogenesis of MALT lymphoma. Gastroenterol. Res. Pract. 2015; 2015: 102656. DOI: https://doi.org/10.1155/2015/102656

64. Hatakeyama M., Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 2005; 96 (12): 835–43. DOI: https://doi.org/10.1111/j.1349-7006.2005.00130.x

65. Umehara S., Higashi H., Ohnishi N., Asaka M., Hatakeyama M. Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene. 2003; 13; 22 (51): 8337–42. DOI: https://doi.org/10.1038/sj.onc.1207028

66. Delchier J.C., Lamarque D., Levy M., Tkoub E.M., Copie-Bergman C., Deforges L., et al. Helicobacter pylori and gastric lymphoma: high seroprevalence of CagA in diffuse large B-cell lymphoma but not in low-grade lymphoma of mucosa-associated lymphoid tissue type. Am. J. Gastroenterol. 2001; 96 (8): 2324–8. DOI: https://doi.org/10.1111/j.1572-0241.2001.04036.x

67. Koehler C.I., Mues M.B., Dienes H.P., Kriegsmann J., Schirmacher P., Odenthal M. Helicobacter pylori genotyping in gastric adenocarcinoma and MALT lymphoma by multiplex PCR analyses of paraffin wax embedded tissues. Mol. Pathol. 2003; 56 (1): 36–42. DOI: https://doi.org/10.1136/mp.56.1.36

68. Appelmelk B.J., Martin S.L., Monteiro M.A., Clayton C.A., McColm A.A., Zheng P., et al. Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect. Immun. 1999; 67 (10): 5361–6. DOI: https://doi.org/10.1128/IAI.67.10.5361-5366.1999

69. Bergman M.P., Engering A., Smits H.H., van Vliet S.J., van Bodegraven A.A., Wirth H.P., et al. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J. Exp. Med. 2004; 200 (8): 979–90. DOI: https://doi.org/10.1084/jem.20041061

70. Liu H., Hamoudi R.A., Ye H., Ruskone-Fourmestraux A., Dogan A., Isaacson P.G., Du M.Q. t(11;18)(q21;q21) of mucosa-associated lymphoid tissue lymphoma results from illegitimate non-homologous end joining following double strand breaks. Br. J. Haematol. 2004; 125 (3): 318–29. DOI: https://doi.org/10.1111/j.1365-2141.2004.04909.x

71. Nagel D., Vincendeau M., Eitelhuber A.C., Krappmann D. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene. 2014; 33 (50): 5655–65. DOI: https://doi.org/10.1038/onc.2013.565

72. Du M.Q. MALT lymphoma: many roads lead to nuclear factor-κb activation. Histopathology. 2011; 58 (1): 26–38. DOI: 10.1111/j.1365-2559.2010.03699.x

73. Willis T.G., Jadayel D.M., Du M.Q., Peng H., Perry A.R., Abdul-Rauf M., et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999; 96 (1): 35–45. DOI: https://doi.org/10.1016/s0092-8674(00)80957-5

74. Streubel B., Vinatzer U., Lamprecht A., Raderer M, Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005; 19 (4): 652–8. DOI: https://doi.org/10.1038/sj.leu.2403644

75. Du M., Peng H., Singh N., Isaacson P.G., Pan L. The accumulation of p53 abnormalities is associated with progression of mucosa-associated lymphoid tissue lymphoma. Blood. 1995; 86 (12): 4587–93. PMID: 8541549.

76. Neumeister P., Hoefler G., Beham-Schmid C., Schmidt H., Apfelbeck U., Schaider H., Linkesch W., Sill H. Deletion analysis of the p16 tumor suppressor gene in gastrointestinal mucosa-associated lymphoid tissue lymphomas. Gastroenterology. 1997; 112 (6): 1871–5. DOI: https://doi.org/10.1053/gast.1997.v112.pm9178679

77. Martinez-Delgado B., Fernandez-Piqueras J., Garcia M.J., Arranz E., Gallego J., Rivas C., Robledo M., Benitez J. Hypermethylation of a 5' CpG island of p16 is a frequent event in non-Hodgkin's lymphoma. Leukemia. 1997; 11 (3): 425–8. DOI: https://doi.org/10.1038/sj.leu.2400579

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»