Problems associated with the manifestation of immunogenicity of biotherapeutic proteins and ways to solve them

Abstract

The clinical effectiveness of the use of biotechnological medicines (therapeutic/biotherapeutic proteins) is due to the high selectivity of action on certain links in the pathogenesis of the disease due to the specificity of their interaction with a significant target antigen. However, their use is accompanied by the development of serious side effects, in some cases due to the manifestation of unwanted immunogenicity. One of the main clinical manifestations of the formation of an immune response to a medicine is the development of the patient’s non-response to the therapy. The review analyzes the mechanisms of development of primary and secondary nonresponsiveness to the medicine, approaches to elucidating the cause of the manifestations of responsiveness and choosing a strategy for further treatment of patients with this condition. A critical analysis of methodological techniques for assessing the immunogenicity of a medicinal product and detecting anti-drug antibodies (ADA) in blood serum samples from patients is presented.

Keywords:immunogenicity; antibodies to the medicine, biotechnological medicines; biotechnological (therapeutic) proteins; monoclonal antibodies; primary and secondary nonresponsiveness to the medicine; pharmacokinetics; efficacy; safety

For citation: Avdeeva Zh.I., Soldatov A.A., Bondarev V.P, Mosyagin V.D., Merkulov V.A. Problems associated with the manifestation of immunogenicity of biotherapeutic proteins and ways to solve them. Immunologiya. 2021; 42 (6): 706-19. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-706-719. (in Russian)

Funding. The study was carried out at the framework of the State task of the Scientific Centre for Expert Evaluation of Medicinal Products of the MOH of Russia No. 056-00005-21-00 for the applied researches investigations (R&D State registration No. 121022000147-4).

Conflict of interests. The authors declare no conflict of interests.

References

1. Nasonov E.L., Denisov L.N., Stanislav M.L., Il’ina A.E. Prospects of pharmacotherapy of rheumatoid arthritis: monoclonal antibodies. Prakticheskaya revmatologiya. 2012; 52 (3): 75–82. (in Russian)

2. Sigidin Ya.A., Lukina G.V. Biological therapy in rheumatology. Moscow: Prakticheskaya meditsina, 2009: 302 р. (in Russian)

3. Moiseenko V.M. Features of monoclonal antibodies in the treatment of malignant tumors. Prakticheskaya onkologiya. 2002; 3 (4): 253–61. (in Russian)

4. Biggioggero M., Favalli E.G. Ten-year drug survival of anti-TNF agents in the treatment of inflammatory arthritides. Drug Dev. Res. 2014; 75 (suppl. 1): 38–41. DOI: https://doi.org/10.1002/ddr.21192

5. Vandivort T.C., Horton D.B., Johnson S.B. Regulatory and strategic considerations for addressing immunogenicity and related responses in biopharmaceutical development programs. J. Clin. Transl. Sci. 2020; 4 (6): 547–55. DOI: https://doi.org/10.1017/cts.2020.493

6. Homann A., Rockendorf N., Kromminga A., Frey A., Platts-Mills T.A., Jappe U. Glycan and peptide IgE epitopes of the TNF-alpha blockers infliximab and adalimumab – precision diagnostics by cross-reactivity immune profiling of patient sera. Theranostics. 2017; 7 (19): 4699–709. DOI: https://doi.org/10.7150/thno.20654

7. Bugelski P.J., Achuthanandam R., Capocasale R.J., Treacy G., Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev. Clin. Immunol. 2009; 5 (5): 499–521.

8. Strand V., Goncalves J., Isaacs J.D. Immunogenicity of biologic agents in reumatology. Nat. Rev. Rheumatol. 2021; 17 (2): 81–97. DOI: https://doi.org/10.1038/s41584-020-00540-8

9. Strand V., Balsa A., Al-Saleh J., Barile-Fabris L., Horiuchi T., Takeuchi T., et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs. 2017; 31: 299–316. DOI: https://doi.org/10.1007/s40259-017-0231-8

10. Jani M., Dixon W.G., Chinoy H. Drug safety and immunogenicity of tumour necrosis factor inhibitors: the story so far. Rheumatology. 2018; 57: 1896–907. DOI: https://doi.org/10.1093/rheumatology/kex434

11. Nasonov E.L. Factor of a necrosis of a tumor α — a new target for anti-inflammatory therapy of rheumatoid arthritis. Klinicheskaya farmakologiya i terapiya. 2001; 10 (1): 64–70. (in Russian)

12. Smolen J.S., Han C., Bala M., Maini R.N., Kalden J.R., van der Heijde D., et al. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum. 2005; 52 (4): 1020–30. DOI: https://doi.org/10.1002/art.20982

13. Elliott M.J., Maini R.N., Feldmann M., Long-Fox A., Charles P., Katsikis P., et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 1993; 36: 1681–90. DOI: https://doi.org/10.1002/art.1780361206

14. Maini R., St Clair E.W., Breedveld F., Furst D., Kalden J., Weisman M., et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet. 1999; 354: 1932–9. DOI: https://doi.org/10.1016/S0140-6736(99)05246-0

15. Weinblatt M.E., Keystone E.C., Furst D.E., Moreland L.W., Weisman M.H., Birbara C.A., et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 2003; 48: 35–45. DOI: https://doi.org/10.1002/art.10697

16. Mehta P., Manson J. What is the clinical relevance of TNF inhibitor immunogenicity in the management of patients with rheumatoid arthritis? Front. Immunol. 2020; 11: 589. DOI: https://doi.org/10.3389/fimmu.2020.00589

17. Bendtzen K. Immunogenicity of anti-TNF-α biotherapies: I. individualized medicine based on immunopharmacological evidence. Front. Immunol. 2015; 6: 152. DOI: https://doi.org/10.3389/fimmu.2015.00152

18. Papamichael K., Gils A., Rutgeerts P., Levesque B.G., Vermeire S., Sandborn W.J., Casteele N.V. Role for therapeutic drug monitoring during induction therapy with TNF antagonists in IBD: evolution in the definition and management of primary nonresponse. Inflamm. Bowel Dis. 2015; 21 (1): 182–97. DOI: https://doi.org/10.1097/MIB.0000000000000202

19. Navarro Coy N.C., Brown S., Bosworth A., Davies C.T., Emery P., Everett C.C., et al. The «Switch» study protocol: a randomised-controlled trial of switching to an alternative tumour-necrosis factor (TNF)-inhibitor drug or abatacept or rituximab in patients with rheumatoid arthritis who have failed an initial TNF-inhibitor drug. BMC Musculoskelet. Disord. 2014; 15 (1): 452. DOI: https://doi.org/10.1186/1471-2474-15-452

20. Fransen J., van Riel P.L.C.M. The Disease Activity Score and the EULAR response criteria. Clin. Exp. Rheumatol. 2005; 23 (5 suppl. 39): 93–9.

21. Kalden J.R., Schulze-Koops H. Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat. Rheumatol. 2017; 13 (12): 707–18. DOI: https://doi.org/10.1038/nrrheum.2017.187

22. Nestorov I. Clinical pharmacokinetics of tumor necrosis factor antagonists. J. Rheumatol. 2005; 32 (suppl. 74): 13–8.

23. Takeuchi T., Miyasaka N., Tatsuki Y., Yano T., Yoshinari T., Abe T., Koike T. Baseline tumour necrosis factor alpha levels predict the necessity for dose escalation of infliximab therapy in patients with rheumatoid arthritis. Ann. Dis. 2011; 70 (7): 1208–15. DOI: https://doi.org/10.1136/ard.2011.153023

24. Klaasen R., Wijbrandts C.A., Gerlag D.M., Tak P.P. Body mass index and clinical response to infliximab in rheumatoid arthritis. Arthritis Rheum. 2011; 63 (2): 359–64. DOI: https://doi.org/10.1002/art.30136

25. Ternant D., Ducourau E., Perdriger A., Corondan A., Goft L.B., Devauchelle-Pensec V., et al. Relationship between inflammation and infliximab pharmacokinetics in rheumatoid arthritis: infliximab pharmacokinetics in rheumatoid arthritis. Br. J. Clin. Pharmacol. 2014; 78 (1): 118–28. DOI: https://doi.org/10.1111/bcp.12313

26. Ryman J.T., Meibohm B. Pharmacokinetics of monoclonal antibodies: pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol. 2017; 6 (9): 576–88. DOI: https://doi.org/10.1002/psp4.12224

27. Mugnier B., Balandraud N., Darque A., Roudier C., Roudier J., Reviron D. Polymorphism at position – 308 of the tumour necrosis factor α gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum. 2003; 48 (7): 1849–52. DOI: https://doi.org/10.1002/art.11168

28. Vincent F.B., Morand E.F., Murphy K., Mackay F., Mariette X., Marcelli Ch. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann. Rheum. Dis. 2013; 72 (2): 165–78. DOI: https://doi.org/10.1136/annrheumdis-2012-202545

29. Atiqi S., Hooijberg F., Loeff F.C., Rispens T., Wolbink G.J. Immunogenicity of TNF-inhibitors. Front. Immunol. 2020; 11: 312. DOI: https://doi.org/10.3389/fimmu.2020.00312

30. Strand V., Gonçalves J., Hickling T.P., Jones H.E., Marshall L., Isaacs J.D. Immunogenicity of biosimilars for rheumatic diseases, plaque psoriasis, and inflammatory bowel disease: a review from clinical trials and regulatory documents. BioDrugs. 2019; 34 (1): 27–37. DOI: https://doi.org/10.1007/s40259-019-00394-x

31. Bendtzen K. Immunogenicity of anti-TNF-a biotherapies: II. Clinical relevance of methods used for anti-drug antibody detection. Front. Immunol. 2015; 6: 109. DOI: https://doi.org/10.3389/fimmu.2015.00109

32. Hetland M.L., Christensen I.J., Tarp U., Dreyer L., Hansen A., Hansen I.T., et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum. 2010; 62 (1): 22–32. DOI: https://doi.org/10.1002/art.27227

33. Cohen S., Myneni S., Batt A., Guerrero J., Brumm J., Chung S. Immunogenicity risk assessment for biotherapeutics through in vitro detection of CD134 and CD137 on T helper cells. MAbs. 2021; 13 (1): 1898831. DOI: https://doi.org/10.1080/19420862.2021.1898831

34. Wen Y., Jawa V. The impact of product and process related critical quality attributes on immunogenicity and adverse immunological effects of biotherapeutics. J. Pharm. Sci. 2021; 110 (3): 1025–41. DOI: https://doi.org/10.1016/j.xphs.2020.12.003

35. Rogers R.S, Nightlinger N.S., Livingston B., Campbell Ph., Bailey R., Balland A. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics. MAbs 2015; 7 (5): 881–90. DOI: https://doi.org/10.1080/19420862.2015.1069454

36. Liu Y., Fernandez J., Pu Z., Zhang H., Cao L., Aguilar I., et al. Simultaneous monitoring and comparison of multiple product quality attributes for cell culture processes at different scales using a LC/MS/MS based multi-attribute method. J. Pharm. Sci. 2020; 109 (11): 3319–29. DOI: https://doi.org/10.1016/j.xphs.2020.07.029

37. Hamuro L., Kijanka G., Kinderman F., Kropshofer H., Bu D.X., Zepeda M., Jawa V. Perspectives on subcutaneous route of administration as an immunogenicity risk factor for therapeutic proteins. J. Pharm. Sci. 2017; 106 (10): 2946–54. DOI: https://doi.org/10.1016/j.xphs.2017.05.030

38. Soldatov A.A., Avdeeva Zh.I., Medunitsyn N.V., Kryuchkov N.A. Mechanisms of development of an undesirable immune response when using biotechnological drugs. Immunologiya. 2017; 38 (5): 271–83. DOI: https://doi.org/10.18821/0206-4952-2017-38-5-271-283 (in Russian)

39. Avdeeva Zh.I., Soldatov A.A., Bondarev V.P., Merkulov V.A., Medunitsyn N.V. The problems concerned with undesirable immunogenicity of biotechnological medicines (therapeutic proteins). Part 1. Methodological approaches to the evaluation of immunogenicity Immunologiya. 2019; 40 (3): 51–64. DOI: https://doi.org/10.24411/0206-4952-2019-13006 (in Russian)

40. Avdeeva Zh.I., Soldatov A.A., Mosyagin V.D., Medunitsyn N.V. The problems connected with undesirable immunogenicity of biotechnological medicines (therapeutic proteins). Part 2. Clinical aspects. Immunologiya. 2019; 40 (4): 29–40. DOI: https://doi.org/10.24411/0206-4952-2019-14004 (in Russian)

41. Nencini F., Vultaggio A., Pratesi S., Cammelli D., Milla M., Fiori G., et al. The kinetics of antidrug antibodies, drug levels, and clinical outcomes in infliximab-exposed patients with immune-mediated disorders. J. Allergy Clin. Immunol. Pract. 2018; 6 (6): 2065–72. DOI: https://doi.org/10.1016/j.jaip.2018.04.007

42. Wolbink G., Vis M., Lems W., Voskuyl A., de Groot E., Nurmohamed M., et al. Development of antiinfliximab antibodies and relationship to clinical response in patients with rheumatoid arthritis. Arthritis Rheum. 2006; 54 (3): 711–5. DOI: https://doi.org/10.1002/art.21671

43. Bartelds G.M., Wijbrandts C.A., Nurmohamed M.T., Stapel S., Lems W.F., Aarden L., et al. Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann. Rheum. Dis. 2007; 66 (7): 921–6. DOI: https://doi.org/10.1136/ard.2006.065615

44. Siljehult F., Ärlestig L., Eriksson C., Rantapää-Dahlqvist S. Concentrations of infliximab and anti-drug antibodies in relation to clinical response in patients with rheumatoid arthritis. Scand. J. Rheumatol. 2018; 47 (5): 345–50. DOI: https://doi.org/10.1080/03009742.2018.1433232

45. Bendtzen K., Geborek P., Svenson M., Larsson L., Kapetanovic M.C., Saxne T. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor Infliximab. Arthritis Rheum. 2006; 54 (12): 3782–9. DOI: https://doi.org/10.1002/art.22214

46. Bendtzen K. Personalized medicine: theranostics (therapeutics diagnostics) essential for rational use of tumor necrosis factor-alpha antagonists. Discov. Med. 2013; 15: 201–11.

47. Papamichael K., Vande C.N., Ferrante M., Gils A., Cheifetz A.S. Therapeutic drug monitoring during induction of anti-tumor necrosis factor therapy in inflammatory bowel disease: defining a therapeutic drug window. Inflamm. Bowel Dis. 2017; 23 (9): 1510–15. DOI: https://doi.org/10.1097/MIB.0000000000001231

48. Wong U., Cross R.K. Primary and secondary nonresponse to infliximab: mechanisms and countermeasures. Expert Opin. Drug Metab. Toxicol. 2017; 13 (10): 1039–46. DOI: https://doi.org/10.1080/17425255.2017.1377180

49. Hart M.H, de Vrieze H., Wouters D., Wolbink G.J., Killestein J., de Groot E.R., et al. Differential effect of drug interference in immunogenicity assays. J. Immunol. Methods. 2011; 372: 196–203. DOI: https://doi.org/10.1016/j.jim.2011.07.019

50. Wang S.L., Ohrmund L., Hauenstein S., Salbato J., Reddy R., Monk P., et al. Development and validation of a homogeneous mobility shift assay for the measurement of infliximab and antibodies-to-infliximab levels in patient serum. J. Immunol. Methods. 2012; 382: 177–88. DOI: https://doi.org/10.1016/j.jim.2012.06.002

51. Steenholdt C., Bendtzen K., Brynskov J., Thomsen O.E., Ainsworth M.A. Clinical implications of measuring drug and anti-drug antibodies by different assays when optimizing infliximab treatment failure in Crohn’s disease: post hoc analysis of a randomized controlled trial. Am. J. Gastroenterol. 2014; 109: 1055–64. DOI: https://doi.org/10.1038/ajg.2014.106

52. El Amrani M., Göbel C., Egas A.C., Nierkens S., Hack C.E., Huitema A.D.R., van Maarseveen E.M. Quantification of neutralizing anti-drug antibodies and their neutralizing capacity using competitive displacement and tandem mass spectrometry: infliximab as proof of principle. J. Transl. Autoimmun. 2019; 1: 100004 DOI: https://doi.org/10.1016/j.jtauto.2019.100004

53. Bourdage J.S., Cook C.A., Farrington D.L., Chain J.S., Konrad R.J. An affinity capture elution (ACE) assay for detection of anti-drug antibody to monoclonal antibody therapeutics in the presence of high levels of drug. J. Immunol. Methods. 2007; 327: 10–7. DOI: https://doi.org/10.1016/j.jim.2007.07.004

54. van Schouwenburg P.A., Bartelds G.M., Hart M.H., Aarden L., Wolbink G.J., Wouters D. A novel method for the detection of antibodies to adalimumab in the presence of drug reveals «hidden» immunogenicity in rheumatoid arthritis patients. J. Immunol. Methods. 2010; 362: 82–8. DOI: https://doi.org/10.1016/j.jim.2010.09.005

55. Wadhwa M., Thorpe R. Harmonization and standardization of immunogenicity assessment of biotherapeutic products. Bioanalysis. 2019; 11 (17): 1593–604. DOI: https://doi.org/10.4155/bio-2019-0202

56. Guideline for the examination of drugs. Vol. I. Moscow: Grif i K, 2013: 328 p. (in Russian)

57. Guideline on Immunogenicity assessment of therapeutic proteins (EMEA/CHMP/BMWP/14327/2006 Rev 1) Committee for Medicinal Products for Human Use (CHMP) 18 May 2017.

58. Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use (EMA/CHMP/ BMWP/86289/2010).

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»