Adjuvants and immunomodulators in vaccines

Abstract

Infection diseases remain one of the leading causes of the death toll in the world. Resent achievements in vaccine development made a significant contribution to frequency reduction in incidence of infection diseases. Live and inactivated vaccines contain a weakened pathogen, which provides the highest level of immunological potency of vaccine. However, this negatively affects the safety of the vaccine itself. Subunit vaccine based on fragments of viruses or bacteria. High level of safety is provided by the absence of an infection agent in the vaccine. This fact naturally reduces its ability to induce long-term and post vaccination immunity. Thus, adjuvants are necessary for development of effective vaccines. Originally chemical compounds were used as adjuvants to promote local inflammation and antigen deposition. The effectiveness of this approach has been demonstrated in numerous experiments. Discovery of pattern-recognition receptors (PRRs) shed the light on the role of many well-known adjuvants to activate the innate immune system, what is critically important for triggering the adaptive immunity. Interaction of adjuvant with PRRs results in activation of inflammasome, amplification of the expression of MHC and the cytokine network activation. However there is still no full understanding of adjuvant effects and this fact requires future investigation. The data on the common adjuvants used in contemporary vaccines are analyzed in review. Literature search was conducted through the following science data bases: Web of Science, Pubmed, RSCI.

Keywords:immunity; vaccine; original adjuvants; pathogen recognition receptors based adjuvants; mucosal adjuvants; new adjuvants with immunomodulatory effects; review

For citation: Andreev Yu.Yu., Toptygina A.P. Adjuvants and immunomodulators in vaccines. Immunologiya. 2021; 42 (6): 720-9. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-720-729 (in Russian)

Funding. The study had not sponsor support.

Conflict of interests. Authors declare no conflicts of interests.

References

1. Eisenbarth S.C., Colegio O.R., O’Connor W., Sutterwala F.S., Flavell R.A. Crucial role for the nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008; 453 (7198): 1122–6.

2. Vrieling H., Kooijman S., de Ridder J. W., Thies-Weesie D., Soema P. C., Jiskoot W., et al. Activation of human monocytes by colloidal aluminum salts. J. Pharm. Sci. 2020; 109 (1): 750–60.

3. Sokolovska A., Hem S.L., Hogenesch H. Activation of dendritic cells and induction of cd4(+) t cell differentiation by aluminum-containing adjuvants. Vaccine. 2007; 25 (23): 4575–85.

4. Masson J.D., Crépeaux G., Authier F.J., Exley C., Gherardi R.K. Critical analysis of reference studies on the toxicokinetics of aluminum-based adjuvants. J. Inorg. Biochem. 2018; 181: 87–95.

5. Moyer T.J., Kato Y., Abraham W., Chang J., Kulp D.W., Watson N., et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 2020; 26 (3): 430–40.

6. Vo H., Baudner B.C., Sammicheli S., Iannacone M., D’Oro U., Piccioli D. Alum/toll-like receptor 7 adjuvant enhances the expansion of memory B cell compartment within the draining lymph node. Front. Immunol. 2018; 9: 641.

7. Billiau A., Matthys P. Modes of action of Freund's adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol. 2001; 70 (6): 849–60.

8. O’Hagan D.T., Ott G.S., De Gregorio E., Seubert A. The mechanism of action of MF59 — an innately attractive adjuvant formulation. Vaccine. 2012; 30 (29): 4341–8.

9. Vesikari T., Knuf M., Wutzler P., Karvonen A., Kieninger-Baum D., Schmitt H.J., et al. Oil-in-water emulsion adjuvant with influenza vaccine in young children. N. Engl. J. Med. 2011; 365 (15): 1406–16.

10. Boudreau C.M., Yu W.H., Suscovich T.J., Talbot H.K., Edwards K.M., Alter G. Selective induction of antibody effector functional responses using MF59-adjuvanted vaccination. J. Clin. Invest. 2020; 130 (2): 662–72.

11. Seydoux E., Liang H., Dubois Cauwelaert N., Archer M., Rintala N.D., Kramer R., et al. Effective combination adjuvants engage both TLR and inflammasome pathways to promote potent adaptive immune responses. J. Immunol. 2018; 201 (1): 98–112.

12. Hill D.L., Pierson W., Bolland D.J., Mkindi C., Carr E.J., Wang J., et al. The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes. J. Exp. Med. 2019; 216 (8): 1857–73.

13. Day T.A., Penn-Nicholson A., Luabeya A., Fiore-Gartland A., Du Plessis N., Loxton A.G., et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir. Med. 2021; 9 (4): 373–86.

14. Pillet S., Aubin É., Trépanier S., Poulin J.F., Yassine-Diab B., Ter Meulen J., et al. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. NPJ Vaccines. 2018; 3: 3.

15. Ellebedy A.H., Nachbagauer R., Jackson K., Dai Y.N., Han J., Alsoussi W.B., et al. Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans. Proc. Natl Acad. Sci. USA. 2020; 117 (30): 17 957–64.

16. Galassie A.C., Goll J.B., Samir P., Jensen T.L., Hoek K.L., Howard L.M., et al. Proteomics show antigen presentation processes in human immune cells after AS03-H5N1 vaccination. Proteomics. 2017; 17 (12): 453.

17. Howard L.M., Hoek K.L., Goll J. B., Samir P., Galassie A., Allos T.M., et al. Cell-based systems biology analysis of human AS03-adjuvanted H5N1 avian influenza vaccine responses: a Phase I randomized controlled trial. PLoS One. 2017; 12 (1): e0167488.

18. Elbahnasawy M.A., Donius L.R., Reinherz E.L., Kim M. Co-delivery of a CD4 T cell helper epitope via covalent liposome attachment with a surface-arrayed B cell target antigen fosters higher affinity antibody responses. Vaccine. 2018; 36 (41): 6191–201.

19. Didierlaurent A.M., Laupèze B., Di Pasquale A., Hergli N., Collignon C., Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev. Vaccines. 2016; 16 (1): 55–63.

20. Welsby I., Detienne S., N’Kuli F., Thomas S., Wouters S., Bechtold V., et al. Lysosome-dependent activation of human dendritic cells by the vaccine adjuvant QS-21. Front. Immunol. 2017; 7: 663.

21. Coccia M., Collignon C., Hervé C., Chalon A., Welsby I., Detienne S., et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccines. 2017; 2: 25.

22. Lal H., Poder A., Campora L., Geeraerts B., Oostvogels L., Vanden Abeele C., et al. Immunogenicity, reactogenicity and safety of 2 doses of an adjuvanted herpes zoster subunit vaccine administered 2, 6 or 12 months apart in older adults: results of a phase III, randomized, open-label, multicenter study. Vaccine. 2018; 36 (1): 148–54.

23. Moncunill G., De Rosa S.C., Ayestaran A., Nhabomba A.J., Mpina M., Cohen K.W., et al. RTS,S/AS01E malaria vaccine induces memory and polyfunctional T cell responses in a pediatric African Phase III trial. Front. Immunol. 2017; 8: 1008.

24. Zhou G., Hollenberg M.D., Vliagoftis H., Kane K.P. Protease-activated receptor 2 agonist as adjuvant: augmenting development of protective memory CD8 T cell responses induced by influenza virosomes. J. Immunol. 2019; 203 (2): 441–52.

25. Heinimäki S., Tamminen K., Malm M., Vesikari T., Blazevic V. Live baculovirus acts as a strong B and T cell adjuvant for monomeric and oligomeric protein antigens. Virology. 2017; 511: 114–22.

26. Blom R., Amacker M., Moser C., van Dijk R. M., Bonetti R., Seydoux E., et al. Virosome-bound antigen enhances DC-dependent specific CD4+ T cell stimulation, inducing a Th1 and Treg profile in vitro. Nanomedicine. 2017; 13 (5): 1725–37.

27. Chen S., Hanning S., Falconer J., Locke M., Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019; 144: 18–39.

28. Mokhtar M., Sammour O.A., Hammad M.A., Megrab N.A. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int. J. Pharm. 2008; 361 (1–2): 104–11.

29. Manosroi A., Chankhampan C., Manosroi W., Manosroi J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur. J. Pharm. Sci. 2013; 48 (3): 474–83.

30. Abdelkader H., Wu Z., Al-Kassas R., Alany R.G. Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int. J. Pharm. 2012; 433 (1–2): 142–8.

31. Muzzalupo R., Pérez L., Pinazo A., Tavano L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: skin penetration behavior and controlled drug release. Int. J. Pharm. 2017; 529 (1–2): 245–52.

32. Saini N., Sodhi R.K., Bajaj L., Pandey R.S., Jain U.K., Katare O.P., et al. Intravaginal administration of metformin hydrochloride loaded cationic niosomes amalgamated with thermosensitive gel for the treatment of polycystic ovary syndrome: in vitro and in vivo studies. Colloids Surf. 2016; 144: 161–9.

33. Duthie M.S., Windish H.P., Fox C.B., Reed S.G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 2011; 239 (1): 178–96.

34. De Silva N.S., Klein U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 2015; 15 (3): 137–48.

35. Lee B.R., Jeong S.K., Ahn B.C., Lee B.J., Shin S.J., Yum J.S., et al. Combination of TLR1/2 and TLR3 ligands enhances CD4(+) T cell longevity and antibody responses by modulating type I IFN production. Sci. Rep. 2016; 6: 32526.

36. Honegr J., Malinak D., Dolezal R., Soukup O., Benkova M., Hroch L., et al. Rational design of novel TLR4 ligands by in silico screening and their functional and structural characterization in vitro. Eur. J. Med. Chem. 2018; 146: 38–46.

37. Lebedeva E., Bagaev A., Pichugin A., Chulkina M., Lysenko A., Tutykhina I., et al. The differences in immunoadjuvant mechanisms of TLR3 and TLR4 agonists on the level of antigen-presenting cells during immunization with recombinant adenovirus vector. BMC Immunol. 2018; 19 (1): 26.

38. Cui B., Liu X., Fang Y., Zhou P., Zhang Y., Wang Y. Flagellin as a vaccine adjuvant. Expert Rev. Vaccines. 2018; 17 (4): 335–49.

39. Speer E.M., Dowling D.J., Ozog L.S., Xu J., Yang J., Kennady G., et al. Pentoxifylline inhibits TLR- and inflammasome-mediated in vitro inflammatory cytokine production in human blood with greater efficacy and potency in newborns. Pediatr. Res. 2017; 81 (5): 806–16.

40. Clemens E.A., Holbrook B.C., Kanekiyo M., Yewdell J.W., Graham B.S., Alexander-Miller M.A. An R848 conjugated influenza virus vaccine elicits robust IgG to hemagglutinin stem in a newborn nonhuman primate model. J. Infect. Dis. 2021; 224 (2): 351–9.

41. Miller S.M., Cybulski V., Whitacre M., Bess L.S., Livesay M.T., et al. Novel Lipidated imidazoquinoline TLR7/8 adjuvants elicit influenza-specific Th1 immune responses and protect against heterologous H3N2 influenza challenge in mice. Front. Immunol. 2020; 11: 406.

42. Dowling D.J. Recent advances in the discovery and delivery of TLR7/8 agonists as vaccine adjuvants. Immunohorizons. 2018; 2 (6): 185–97.

43. Zhang L., Wu S., Qin Y., Fan F., Zhang Z., Huang C., et al. Targeted co-delivery of antigen and dual-agonists by hybrid nanoparticles for enhanced cancer immunotherapy. Nano Letters. 2019; 19 (7): 4237–49.

44. Schleimann M.H., Kobbero M.L., Vibholm L.K., Kjaer K., Giron L.B., Busman-Sahay K., et al. TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes. EBioMedicine. 2019; 45: 328–40.

45. Krarup A.R., Abdel-Mohsen M., Schleimann M.H., Vibholm L., Engen P.A., Dige A., et al. The TLR9 agonist MGN1703 triggers a potent type I interferon response in the sigmoid colon. Mucosal Immunol. 2018; 11 (2): 449–61.

46. Newman A.M., Liu C.L., Green M.R., Gentles A.J., Feng W., Xu Y., et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods. 2015; 12 (5): 453–57.

47. Pavot V., Rochereau N., Resseguier J., Gutjahr A., Genin C., Tiraby G., et al. Cutting edge: New chimeric NOD2/TLR2 adjuvant drastically increases vaccine immunogenicity. J. Immunol. 2014; 193 (12): 5781–5.

48. Zhou C.J., Chen J., Hou J.B., Zheng Y., Yu Y.N., He H., et al. The immunological functions of muramyl dipeptide compound adjuvant on humoral, cellular-mediated and mucosal immune responses to PEDV inactivated vaccine in mice. Protein Peptide Lett. 2018; 25 (10): 908–13.

49. Gur’yanova S.V., Khaitov R.M. Glucosaminylmuramyldipeptide – GMDP: effect on mucosal immunity (on the issue of immunotherapy and immunoprophylaxis. Immunologiya. 2020; 41 (2): 74–83. (in Russian).

50. AbdelAllah N.H., Gaber Y., Rashed M.E., Azmy A.F., Abou-Taleb H.A., AbdelGhani S. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int. J. Biol. Macromol. 2020; 152: 904–12.

51. Bi Y., Xu Q., Su L., Xu J., Liu Z., Yang Y., et al. The combinations chitosan-Pam3CSK4 and chitosan-monophosphoryl lipid A: promising immune-enhancing adjuvants for anticaries vaccine PAc. Infect. Immun. 2019; 87 (12): e00651-19.

52. Sánchez J., Holmgren J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell. Mol. Life Sci. 2008; 65 (9): 1347–60.

53. Erkelens M.N., Mebius R.E. Retinoic acid and immune homeostasis: a balancing act. Trends Immunol. 2017; 38 (3): 168–80.

54. Petrov R.V., Khaitov R.M., Nekrasov A.V., Attaulkhanov B.I., Puchkova N.G., Ivanova A.S., Pinegin B.V. Polyixodonium: mechanism of action and clinical application. Meditsinskaya immunologiya. 2000; 2 (3): 271–8. (in Russian)

55. Kostinov M.P., Akhmatova N.K., Khromova E.A., Kostinova A.M. Cytokine Profile in human peripheral blood mononuclear leukocytes exposed to immunoadjuvant and adjuvant-free vaccines against influenza. Front. Immunol. 2020; 11: 1351.

56. Talayev V., Zaichenko I., Svetlova M., Matveichev A., Babaykina O., Voronina E., et al. Low-dose influenza vaccine Grippol Quadrivalent with adjuvant Polyoxidonium induces a T helper-2 mediated humoral immune response and increases NK cell activity. Vaccine. 2020; 38 (42): 6645–55.

57. Man’ko V.M., Rudneva T.B., Razvalyaeva N.A., Puchkova N.G., Khaitov R.M. Phenotypic correction of gene control of the immune response to influenza vaccine. Immunologiya. 1997; 18 (4): 36–9. (in Russian)

58. Toptygina A.P., Soldatenkova N.A., Aleshkin V.A. The use of immunocorrector polyoxidonium for immunization of children with the vaccine «Priorix». Immunologiya. 2005; 26 (5): 308–11. (in Russian)

59. Toptygina A., Semikina E., Alioshkin V. Influence of an immunopotentiator Polyoxidonium on cytokine profile and antibody production in children vaccinated with Priorix. Arch. Physiol. Biochem. 2012; 118 (4): 197–203.

60. Pružinec P., Chirun N., Sveikata A. The safety profile of Polyoxidonium in daily practice: results from postauthorization safety study in Slovakia. Immunotherapy. 2018; 10 (2): 131–7.

61. Nasadyuk C., Sklyarov A. Thymohexin exhibits cytoprotective effect in experimental gastric lesions in rats both through the inhibition of inducible nitric oxide synthase and reduction of oxidative mucosal damage. Regul. Pept. 2013; 180: 50–7.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»