Tumor xenografts as the model for a preclinical trials of genetically modified cell therapy

Abstract

Currently, anticancer therapy based on the adoptive transfer of genetically modified cells is being actively developed, which increasingly actualizes tumor xenografts as a model for preclinical testing of these cellular products. The tumor xenografts model is the closest of the existing methods that simulate natural tumor growth since it reproduces a three-dimensional vascularized tumor in the body with maintained homeostasis, metabolism, and possible mechanisms of tolerance to the therapeutic agent. Long-term use of the model has led to its standardization due to the emergence of well-characterized tumor cell lines and inbred mice, as well as in vivo imaging methods that measure the progression of cancer objectively. Modern approaches based on patient-derived tumor xenografts more closely imitate the intratumoral and intertumoral heterogeneity observed in clinical practice, which provides a more adequate assessment of the antitumor potential of the cell products studied. At the moment, the world literature has accumulated a large amount of data on the used tumor cell lines and inbred mice properties and the model methodology, which is necessary to obtain reliable results in the tumor xenograft model. The xenograft tumor biology and the interaction mechanisms of therapeutic genetically modified T cells and the tumor have been studied in sufficient detail, which will also be considered in this work to help in choosing an adequate and informative model for research.

Keywords:tumor xenografts; tumor cell lines; immunodeficient mice; genetically modified T-lymphocytes

Funding. The research was supported by the grant of the RSF no. 21-65-00004, https://rscf.ru/project/21-65-00004/.

Conflict of interests. The authors declare no conflict of interests.

For citation: Tereshchenko V.P., Sennikov S.V. Tumor xenografts as the model for a preclinical trials of genetically modified cell therapy. Immunologiya. 2021; 42 (6): 730-41. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-730-741 (in Russian)

References

1. Komen J., van Neerven S.M., van den Berg A., Vermeulen L., van der Meer A.D. Mimicking and surpassing the xenograft model with cancer-on-chip technology. EBioMedicine. 2021; 66: 103303. DOI: https://doi.org/10.1016/j.ebiom.2021.103303

2. Joshi S.S., Jackson J.D., Sharp J.G. Comparison of the Growth and Metastasis of Four Human Intestinal Tumor Cell Line Xenografts. Tumor Biol. 1989; 10: 117–25. DOI: https://doi.org/10.1159/000217607

3. Benzekry S., Lamont C., Beheshti A., Tracz A., Ebos J.M.L., Hlatky L., et al. Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth. PLoS Comput. Biol. 2014; 10: e1003800. DOI: https://doi.org/10.1371/journal.pcbi.1003800

4. Laird A.K. Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve to One Cell. Br. J. Cancer. 1965; 19: 278–91. DOI: https://doi.org/10.1038/bjc.1965.32

5. Simeoni M., De Nicolao G., Magni P., Rocchetti M., Poggesi I. Modeling of human tumor xenografts and dose rationale in oncology. Drug Discov. Today Technol. 2013; 10: e365–72. DOI: https://doi.org/10.1016/j.ddtec.2012.07.004

6. Yarwood S.J., Woodgett J.R. Extracellular matrix composition determines the transcriptional response to epidermal growth factor receptor activation. Proc. Natl Acad. Sci. USA. 2001; 98: 4472–7. DOI: https://doi.org/10.1073/pnas.081069098

7. Naba A., Clauser K.R., Hoersch S., Liu H., Carr S.A., Hynes R.O. The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Mol. Cell. Proteomics. 2012; 11: M111.014647. DOI: https://doi.org/10.1074/mcp.M111.014647

8. Mesker W.E., Junggeburt J.M.C., Szuhai K., de Heer P., Morreau H., Tanke H.J., et al. The Carcinoma–Stromal Ratio of Colon Carcinoma Is an Independent Factor for Survival Compared to Lymph Node Status and Tumor Stage. Anal. Cell Pathol. 2007; 29: 387–98. DOI: https://doi.org/10.1155/2007/175276

9. Mueller M.M., Fusenig N.E. (eds). Tumor-Associated Fibroblasts and their Matrix. Dordrecht: Springer Netherlands, 2011. DOI: https://doi.org/10.1007/978-94-007-0659-0

10. Schneeberger V.E., Allaj V., Gardner E.E., Poirier J.T., Rudin C.M. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis. PLoS One. 2016; 11: e0160587. DOI: https://doi.org/10.1371/journal.pone.0160587

11. Yoshida G.J., Azuma A., Miura Y., Orimo A. Activated Fibroblast Program Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the Associated Therapeutic Strategies. Int. J. Mol. Sci. 2019; 20: 2256. DOI: https://doi.org/10.3390/ijms20092256

12. Hillen F., Griffioen A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007; 26: 489–502. DOI: https://doi.org/10.1007/s10555-007-9094-7

13. Forster J., Harriss-Phillips W., Douglass M., Bezak E. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia. 2017; 5: 21–32. DOI: https://doi.org/10.2147/HP.S133231

14. Sullivan M.R., Danai L.V., Lewis C.A., Chan S.H., Gui D.Y., Kunchok T., et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife. 2019; 8: e44235. DOI: https://doi.org/10.7554/eLife.44235

15. Burrell R.A., McGranahan N., Bartek J., Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013; 501: 338–45. DOI: https://doi.org/10.1038/nature12625

16. Meacham C.E., Morrison S.J. Tumour heterogeneity and cancer cell plasticity. Nature. 2013; 501: 328–37. DOI: https://doi.org/10.1038/nature12624

17. Lenos K.J., Miedema D.M., Lodestijn S.C., Nijman L.E., van den Bosch T., Romero Ros X., et al. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat. Cell Biol. 2018; 20: 1193–202. DOI: https://doi.org/10.1038/s41556-018-0179-z

18. van der Heijden M., Miedema D.M., Waclaw B., Veenstra V.L., Lecca M.C., Nijman L.E., et al. Spatiotemporal regulation of clonogenicity in colorectal cancer xenografts. Proc. Natl Acad. Sci. USA. 2019; 116: 6140–5. DOI: https://doi.org/10.1073/pnas.1813417116

19. Williams S.A., Anderson W.C., Santaguida M.T., Dylla S.J. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab. Investig. 2013; 93: 970–82. DOI: https://doi.org/10.1038/labinvest.2013.92

20. Welker A.M., Jaros B.D., An M., Beattie C.E. Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma. Neuroscience. 2017; 356: 35–43. DOI: https://doi.org/10.1016/j.neuroscience.2017.05.010

21. Heskamp S., Hobo W., Molkenboer-Kuenen J.D.M., Olive D., Oyen W.J.G., Dolstra H., et al. Noninvasive Imaging of Tumor PD-L1 Expression Using Radiolabeled Anti-PD-L1 Antibodies. Cancer Res. 2015; 75: 2928–36. DOI: https://doi.org/10.1158/0008-5472.CAN-14-3477

22. Kim S., Zhang Y., Tang S., Qin C., Karelia D., Sharma A., et al. Optimizing live‐animal bioluminescence imaging prediction of tumor burden in human prostate cancer xenograft models in SCID‐NSG mice. Prostate. 2019; 79: 949–60. DOI: https://doi.org/10.1002/pros.23802

23. Киселевский М.В., Чикилева И.О., Ситдикова С.М., Власенко Р.Я., Караулов А.В. Перспективы применения генетически модифицированных лимфоцитов с химерным Т-клеточным рецептором (CAR-T-клеток) для терапии солидных опухолей. Иммунология. 2019; 40 (4): 48–55. DOI: https://doi.org/10.24411/0206-4952-2019-14006 [Kiselevsky M.V., Chikileva I.O., Sitdikova S.M., Vlasenko R.Ya., Karaulov A.V. Prospectives of application of the genetically modified lymphocytes with chimeric T-cell receptor (CAR-T-cells) for the therapy of solid tumors. Immunologiya. 2019; 40 (4): 48–55. DOI: https://doi.org/10.24411/0206-4952-2019-14006 (in Russian)]

24. Davenport A.J., Cross R.S., Watson K.A., Liao Y., Shi W., Prince H.M., et al. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc. Natl Acad. Sci. USA. 2018; 115: E2068–76. DOI: https://doi.org/10.1073/pnas.1716266115

25. Mamonkin M., Rouce R.H., Tashiro H., Brenner M.K. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015; 126: 983–92. DOI: https://doi.org/10.1182/blood-2015-02-629527

26. Liadi I., Singh H., Romain G., Rey-Villamizar N., Merouane A., Adolacion J.RT., et al. Individual Motile CD4 + T Cells Can Participate in Efficient Multikilling through Conjugation to Multiple Tumor Cells. Cancer Immunol. Res. 2015; 3: 473–82. DOI: https://doi.org/10.1158/2326-6066.CIR-14-0195

27. Janssen E.M., Lemmens E.E., Wolfe T., Christen U., von Herrath M.G., Schoenberger S.P. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 2003; 421: 852–6. DOI: https://doi.org/10.1038/nature01441

28. Hassin D., Garber O.G., Meiraz A., Schiffenbauer Y.S., Berke G. Cytotoxic T lymphocyte perforin and Fas ligand working in concert even when Fas ligand lytic action is still not detectable. Immunology. 2011; 133: 190–6. DOI: https://doi.org/10.1111/j.1365-2567.2011.03426.x

29. Davenport A.J., Jenkins M.R., Cross R.S., Yong C.S., Prince H.M., Ritchie D.S., et al. CAR-T Cells Inflict Sequential Killing of Multiple Tumor Target Cells. Cancer Immunol. Res. 2015; 3: 483–94. DOI: https://doi.org/10.1158/2326-6066.CIR-15-0048

30. Van Acker H.H., Ma S, Scolaro T., Kaech S.M., Mazzone M. How metabolism bridles cytotoxic CD8+ T cells through epigenetic modifications. Trends Immunol. 2021; 42: 401–17. DOI: https://doi.org/10.1016/j.it.2021.03.006

31. D’Aloia M.M., Zizzari I.G., Sacchetti B., Pierelli L., Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 2018; 9: 282. DOI: https://doi.org/10.1038/s41419-018-0278-6

32. McLane L.M., Abdel-Hakeem M.S., Wherry E.J. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu. Rev. Immunol. 2019; 37: 457–95.

33. Zhang J., Wang L. The Emerging World of TCR-T Cell Trials Against Cancer: A Systematic Review. Technol. Cancer Res. Treat. 2019; 18: 153303381983106. DOI: https://doi.org/10.1177/1533033819831068

34. Roschke A.V., Tonon G., Gehlhaus K.S., McTyre N., Bussey K.J., Lababidi S., et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 2003; 63: 8634–47. URL: http://www.ncbi.nlm.nih.gov/pubmed/14695175

35. Tentler J.J., Tan A.C., Weekes C.D., Jimeno A., Leong S., Pitts T.M., et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012; 9: 338–50.

36. Yamada R., Takahashi A., Torigoe T., Morita R., Tamura Y., Tsukahara T., et al. Preferential expression of cancer/testis genes in cancer stem-like cells: proposal of a novel sub-category, cancer/testis/stem gene. Tissue Antigens. 2013; 81: 428–34. DOI: https://doi.org/10.1111/tan.12113

37. Wang K., Chen Y., Ahn S., Zheng M., Landoni E., Dotti G., et al. GD2-specific CAR T cells encapsulated in an injectable hydrogel control retinoblastoma and preserve vision. Nat. Cancer. 2020; 1: 990–7. DOI: https://doi.org/10.1038/s43018-020-00119-y

38. Akahori Y., Wang L., Yoneyama M., Seo N., Okumura S., Miyahara Y., et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood. 2018; 132: 1134–45.

39. Li T., Wang J. Therapeutic effect of dual CAR-T targeting PDL1 and MUC16 antigens on ovarian cancer cells in mice. BMC Cancer. 2020; 20: 678. DOI: https://doi.org/10.1186/s12885-020-07180-x

40. Morton C.L., Houghton P.J. Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2007; 2: 247–50.

41. John T., Kohler D., Pintilie M., Yanagawa N., Pham N.-A., Li M., et al. The Ability to Form Primary Tumor Xenografts Is Predictive of Increased Risk of Disease Recurrence in Early-Stage Non-Small Cell Lung Cancer. Clin Cancer Res. 2011; 17: 134–41.

42. Lock R.B., Liem N., Farnsworth M.L., Milross C.G., Xue C., Tajbakhsh M., et al. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood. 2002; 99: 4100–8.

43. Simpson-Abelson M.R., Sonnenberg G.F., Takita H., Yokota S.J., Conway T.F., Kelleher R.J., et al. Long-Term Engraftment and Expansion of Tumor-Derived Memory T Cells Following the Implantation of Non-Disrupted Pieces of Human Lung Tumor into NOD-scid IL2Rγ null Mice. J. Immunol. 2008; 180: 7009–18.

44. Lee E.J., Woodske M.E., Zou B., O’Donnell C.P. Dynamic arterial blood gas analysis in conscious, unrestrained C57BL/6J mice during exposure to intermittent hypoxia. J. Appl. Physiol. 2009; 107: 290–4.

45. Ahmed N., Salsman V.S., Kew Y., Shaffer D., Powell S., Zhang Y.J., et al. HER2-Specific T Cells Target Primary Glioblastoma Stem Cells and Induce Regression of Autologous Experimental Tumors. Clin. Cancer Res. 2010; 16: 474–85. DOI: https://doi.org/10.1158/1078-0432.CCR-09-1322

46. Yu V.Z., Ip J.C.Y., Ko J.M.Y., Tao L., Lam A.K., Lung M.L. Orthotopic Xenograft Mouse Model in Esophageal Squamous Cell Carcinoma. Methods Mol. Biol. 2020; 2129: 149–60.

47. Reiberger T., Chen Y., Ramjiawan R.R., Hato T., Fan C., Samuel R., et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis. Nat. Protoc. 2015; 10: 1264–74.

48. Sterner R.M., Sakemura R., Cox M.J., Yang N., Khadka R.H., Forsman C.L., et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019; 133: 697–709.

49. Gril B., Wei D., Zimmer A.S., Robinson C., Khan I., Difilippantonio S., et al. HER2 antibody-drug conjugate controls growth of breast cancer brain metastases in hematogenous xenograft models, with heterogeneous blood tumor barrier penetration unlinked to a passive marker. Neuro Oncol. 2020; 22: 1625–36.

50. Fu J., Shang Y., Qian Z., Hou J., Yan F., Liu G., et al. Chimeric Antigen receptor-T (CAR-T) cells targeting Epithelial cell adhesion molecule (EpCAM) can inhibit tumor growth in ovarian cancer mouse model. J. Vet. Med. Sci. 2021; 83: 241–7. DOI: https://doi.org/10.1292/jvms.20-0455

51. Textor A., Grunewald L., Anders K., Klaus A., Schwiebert S., Winkler A., et al. CD28 Co-Stimulus Achieves Superior CAR T Cell Effector Function against Solid Tumors Than 4-1BB Co-Stimulus. Cancers (Basel). 2021; 13: 1050. DOI: https://doi.org/10.3390/cancers13051050

52. McCormack E., Adams K.J., Hassan N.J., Kotian A., Lissin N.M., Sami M., et al. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol. Immunother. 2013; 62: 773–85. DOI: https://doi.org/10.1007/s00262-012-1384-4

53. Shi Y., Oeh J., Eastham-Anderson J., Yee S., Finkle D., Peale F.V., et al. Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis. Neoplasia. 2013; 15: 1241-IN1.

54. Xu Z., Ding H., Fu T., Zhu Y., Wang W. A Nude Mouse Model of Orthotopic Liver Transplantation of Human Hepatocellular Carcinoma HCCLM3 Cell Xenografts and the Use of Imaging to Evaluate Tumor Progression. Med. Sci. Monit. 2019; 25: 8694–703.

55. Chen Y., Sun C., Landoni E., Metelitsa L., Dotti G., Savoldo B. Eradication of Neuroblastoma by T Cells Redirected with an Optimized GD2-Specific Chimeric Antigen Receptor and Interleukin-15. Clin. Cancer Res. 2019; 25: 2915–24. DOI: https://doi.org/10.1158/1078-0432.CCR-18-1811

56. Xue W., Ton H., Zhang J., Xie T., Chen X., Zhou B., et al. Patient-derived orthotopic xenograft glioma models fail to replicate the magnetic resonance imaging features of the original patient tumor. Oncol Rep. 2020; 43: 1619–29.

57. Kramer-Marek G., Gore J., Korc M. Molecular imaging in pancreatic cancer – a roadmap for therapeutic decisions. Cancer Lett. 2013; 341: 132–8.

58. Wong C.H., Siah K.W., Lo A.W. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019; 20: 273–86.

59. Ayuso J.M., Virumbrales-Muñoz M., Lacueva A., Lanuza P.M., Checa-Chavarria E., Botella P., et al. Development and characterization of a microfluidic model of the tumour microenvironment. Sci. Rep. 2016; 6: 36086.

60. Eduati F., Utharala R., Madhavan D., Neumann U.P., Longerich T., Cramer T., et al. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun. 2018; 9: 2434.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»