Genetic constructs as adjuvants in vaccines based on adenoviral vectors

Abstract

The use of recombinant adenoviral (rAd) vectors for the production of vaccines against various diseases is an urgent task. Usually, rAd vaccines are highly immunogenic and do not require the use of adjuvants. However, in some cases, when antigen is secreted or cytoplasmic, need to increase the immunogenicity and protective properties of the vaccine. The introduction of molecular adjuvants in the composition of rAd vaccines as an auxiliary substance has shown conflicting results and has not found widespread use. A more promising approach is the introduction of adjuvants into the composition of rAd vaccines as genetic constructs. The review considers various genetic constructs that enhance the immunogenicity and protective properties of vaccines based on rAd vectors against various infectious diseases.

Keywords:vaccines based on recombinant adenoviral vectors; molecular adjuvants; calreticulin; C4 binding protein; MHC-II associated invariant chain; ligand CD40L; cytokines; heat shock proteins; Toll-like receptor agonists

For citation: Sedova E.S., Pervoykina K.A., Shcherbinin D.N., Shmarov M.M. Genetic constructs as adjuvants in vaccines based on adenoviral vectors. Immynologiya. 2022; 43 (1): 5–17. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-5-17 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Writing the text – Sedova E.S., Shcherbinin D.N., editing and responsibility for the integrity of all parts of the article – Pervoikina K.A., approval of the final version of the article – Shmarov M.M.

31. Xu H., Andersson A.M., Ragonnaud E., Boilesen D., et al. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication. EBioMedicine. 2017; 18: 204–15. DOI: https://doi.org/10.1016/j.ebiom.2017.03.003

32. Esposito I., Cicconi P., D’Alise A.M., Brown A., et al. MHC class II invariant chain-adjuvanted viral vectored vaccines enhances T cell responses in humans. Sci. Transl. Med. 2020; 12 (548): eaaz7715. DOI: https://doi.org/10.1126/scitranslmed.aaz7715

33. Halbroth B.R., Sebastian S., Poyntz H.C., Bregu M., et al. Development of a molecular adjuvant to enhance antigen-specific CD8+ T cell responses. Sci. Rep. 2018; 8 (1): 15020. DOI: https://doi.org/10.1038/s41598-018-33375-1

34. Fougeroux C., Turner L., Bojesen A.M., Lavstsen T., et al. Modified MHC class II-associated invariant chain induces increased antibody responses against plasmodium falciparum antigens after adenoviral vaccination. J. Immunol. 2019; 202 (8): 2320–31. DOI: https://doi.org/10.4049/jimmunol.1801210

35. Verneret M., Tacnet-Delorme P., Osman R., Awad R., et al. Relative contribution of c1q and apoptotic cell-surface calreticulin to macrophage phagocytosis. J. Innate Immun. 2014; 6: 426–34. DOI: https://doi.org/10.1159/000358834

36. Kuraishi T., Manaka J., Kono M., Ishii H., et al. Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp. Cell Res. 2007; 313: 500–10. DOI: https://doi.org/10.1016/j.yexcr.2006.10.027

37. Neukirch L., Fougeroux C., Andersson A.C., Holst P.J. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev. Vaccines. 2020; 19 (1): 25–41. DOI: https://doi.org/10.1080/14760584.2020.1711054

38. Wang S., Xue J., Lu P., Ni C., et al. Gonococcal MtrE and its surface-expressed Loop 2 are immunogenic and elicit bactericidal antibodies. J. Infect. 2018; 77 (3): 191–204. DOI: https://doi.org/10.1016/j.jinf.2018.06.001

39. Masavuli M.G., Wijesundara D.K., Underwood A., Christiansen D., et al. A hepatitis C virus DNA vaccine encoding a secreted, oligomerized form of envelope proteins is highly immunogenic and elicits neutralizing antibodies in vaccinated mice. Front. Immunol. 2019; 10: 1145. DOI: https://doi.org/10.3389/fimmu.2019.01145

40. Baerlecken N.T., Nothdorft S., Stummvoll G.H., Sieper J., et al. Autoantibodies against CD74 in spondyloarthritis. Ann. Rheum. Dis. 2014; 73 (6): 1211–4. DOI: https://doi.org/10.1136/annrheumdis-2012-202208

41. Fan X., Hashem A. M., Chen Z., Li C., et al. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes. Mucosal Immunol. 2015; 8 (1): 211–20. DOI: https://doi.org/10.1038/mi.2014.59

42. Hashem A.M., Algaissi A., Agrawal A.S., Al-Amri S.S. Highly immunogenic, protective, and safe adenovirus-based vaccine expressing Middle East respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model. J. Infect. Dis. 2019; 220 (10): 1558–67. DOI: https://doi.org/10.1093/infdis/jiz137

43. Zhu C., Yu M., Gao S., Zeng Y., et al. Protective immune responses induced by intranasal immunization with Mycoplasma pneumoniae P1C-IL-2 fusion DNA vaccine in mice. Chin. J. Cell. Mol. Immunol. 2013; 29 (6): 585–8.

44. Qin Y., Tian H., Wang G., Lin C., et al. A BCR/ABL-hIL-2 DNA vaccine enhances the immune responses in BALB/c mice. Biomed. Res. Int. 2013; 2013: 136492. DOI: https://doi.org/10.1155/2013/136492

45. Yamanaka H., Hoyt T., Yang X., Golden S., et al. A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague. Infect. Immun. 2008; 76 (10): 4564–73. DOI: https://doi.org/10.1128/IAI.00581-08

46. Yang S.H., Lee C.G., Park S.H., Im S.J., et al. Correlation of antiviral T-cell responses with suppression of viral rebound in chronic hepatitis B carriers: a proof-of-concept study. Gene Ther. 2006; 13 (14): 1110–7. DOI: https://doi.org/10.1038/sj.gt.3302751

47. Naderi M., Saeedi A., Moradi A., Kleshadi M., et al. Interleukin-12 as a genetic adjuvant enhances hepatitis C virus NS3 DNA vaccine immunogenicity. Virol. Sin. 2013; 28 (3): 167–73. DOI: https://doi.org/10.1007/s12250-013-3291-z

48. Zhao H.G., Huang F.Y., Guo J.L., Tan G.H. Evaluation on the immune response induced by DNA vaccine encoding MIC8 co-immunized with IL-12 genetic adjuvant against Toxoplasma gondii infection. Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese Journal of Parasitology & Parasitic Diseases. 2013; 31 (4): 284–9.

49. Kalams S.A., Parker S.D., Elizaga M., Metch B., et al. Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery. J. Infect. Dis. 2013; 2088 (5): 818–29. DOI: https://doi.org/10.1093/infdis/jit236

50. Li Z.Y., Chen J., Petersen E., Zhou D.H., et al. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine. 2014; 32 (25): 3058–65. DOI: https://doi.org/10.1016/j.vaccine.2014.03.042

51. Su B., Wang J., Zhao G., Wang X., et al. Sequential administration of cytokine genes to enhance cellular immune responses and CD4 (+) T memory cells during DNA vaccination. Hum. Vaccin. Immunother. 2012; 8 (11): 1659–67. DOI: https://doi.org/10.4161/hv.22105

52. Hellerstein M., Xu Y., Marino T., Lu S., et al. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine. Hum. Vaccin. Immunother. 2012; 8 (11): 1654–8. DOI: https://doi.org/10.4161/hv.21978

53. Lena P., Villinger F., Giavedoni L., Miller C.J., et al. Co-immunization of rhesus macaques with plasmid vectors expressing IFN-gamma, GM-CSF, and SIV antigens enhances anti-viral humoral immunity but does not affect viremia after challenge with highly pathogenic virus. Vaccine. 2002; 20 (suppl 4): A69–79. DOI: https://doi.org/10.1016/s0264-410x(02)00391-2

54. Matchett W.E., Malewana G.B.R., Mudrick H., Medlyn M.J., et al. Genetic Adjuvants in replicating single-cycle adenovirus vectors amplify systemic and mucosal immune responses against HIV-1 envelope. Vaccines (Basel). 2020; 8 (1): 64. DOI: https://doi.org/10.3390/vaccines8010064

55. Lapuente D., Storcksdieck Genannt Bonsmann M., Maaske A., Stab V., et al. IL-1β as mucosal vaccine adjuvant: the specific induction of tissue-resident memory T cells improves theheterosubtypic immunity against influenza A viruses. Mucosal Immunol. 2018; 11 (4): 1265–78. DOI: https://doi.org/10.1038/s41385-018-0017-4

56. Breloer M., Fleischer B., von Bonin A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J. Immunol. 1999; 162: 3141–7.

57. Palliser D., Huang Q., Hacohen N., Lamontagne S.P., et al. A role for Toll-like receptor 4 in dendritic cell activation and cytolytic CD8+ T cell differentiation in response to a recombinant heat shock fusion protein. J. Immunol. 2004; 172 (5): 2885–93. DOI: https://doi.org/10.4049/jimmunol.172.5.2885

58. Dabaghian M., Latifi A.M., Tebianian M., NajmiNejad H., et al. Nasal vaccination with r4M2e.HSP70c antigen encapsulated into N-trimethyl chitosan (TMC) nanoparticulate systems: preparation and immunogenicity in a mouse model. Vaccine. 2018; 36 (20): 2886–95. DOI: https://doi.org/10.1016/j.vaccine.2018.02.072

59. Suzue K., Young R.A. Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J. Immunol. 1996; 156: 873–9.

60. Suzue K., Zhou X., Eisen H.N., Young R.A. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl Acad. Sci. USA. 1997; 94: 13 146–51. DOI: https://doi.org/10.1073/pnas.94.24.13146

61. Li J., Ye Z.X., Li K.N., Cui J.H., et al. HSP70 gene fused with Hantavirus S segment DNA significantly enhances the DNA vaccine potency against hantaviral nucleocapsid protein in vivo. Vaccine. 2007; 25: 239–52. DOI: https://doi.org/10.1016/j.vaccine.2006.07.040

62. Cheng L., Yu L., Wu X., Li K., et al. Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector. PLoS One. 2014; 25: 239–52. DOI: https://doi.org/10.1371/journal.pone.0088183

63. Lu H., Zhou X., Wu Z., Zhang X., et al. Comparison of the mucosal adjuvanticities of two Toll-like receptor ligands for recombinant adenovirus-delivered African swine fever virus fusion antigens. Vet. Immunol. Immunopathol. 2021; 239: 110307. DOI: https://doi.org/10.1016/j.vetimm.2021.110307

64. Xiao X., Zhang Y., Wei Q., Yin X. Flagellin FljB as an adjuvant to the recombinant adenovirus rabies glycoprotein vaccine increases immune responses against rabies in mice. Arch. Virol. 2017; 162 (9): 2655–65. DOI: https://doi.org/10.1007/s00705-017-3413-2

65. Rady H.F., Dai G., Huang W., Shellito J.E., et al. Flagellin encoded in gene-based vector vaccines is a route-dependent immune adjuvant. PLoS One. 2016; 11 (2): e0148701. DOI: https://doi.org/10.1371/journal.pone.0148701

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»