Analysis of the number and functional activity of T cells in AAA in mice lacking the IL-27 receptor

Abstract

Introduction. Abdominal aortic aneurysm (AАA) is a vascular disease of the abdominal aorta wall caused by the accumulation of large amounts of immune cells, inflammation and destruction of the vessel wall. The progressive growth of an aneurysm frequently leads to its rupture that can be fatal. Knowledge about the potential immune mechanism driving AAA development is still limited, impacting strategy for AAA treatment.

Aim of the study – to determine the role of the interleukin(IL)-27 receptor in the regulation of the number and functional activity of T cells in AАA in mice.

Material and methods. Apoe-/-Il27ra+/- and Apoe-/-Il27ra-/- mice were fed with high-carbohydrate/high fat diet (Western Diet, WD) and implanted with osmotic pumps filled with angiotensin II (Ang II) to induce the development of AAA. The number of T cells and their subpopulations in the suprarenal part of abdominal aorta/AAA tissue was investigated using flow cytometry and immunofluorescence analyses. The production of secreted cytokines was measured by ELISA in the supernatant of cells isolated from the suprarenal part of abdominal aorta/AAA. Two-tailed Student’s t-test was used to compare the 2 mouse groups (Apoe-/-Il27ra+/- and Apoe-/-Il27ra-/-).

Results. Suprarenal part of abdominal aorta/AAA of IL-27R deficient mice were characterized by limited number of T cells, in particular CD4+ and CD8+ subsets, along with reduced production of T-helper (Th) cytokines such as tumor necrosis factor(TNF)α and interferon-γ (IFN-γ) (Th1 cells), IL-4 and IL-13 (Th2 cells), IL-17A (Th17 cells).

Conclusion. Our data demonstrate that IL-27 receptor-mediated signaling affects the number and activation of T cells, suggesting that inhibition of this cytokine signaling pathway can be used to develop immunotherapy for the treatment of AAA.

Keywords:abdominal aortic aneurysm; IL-27 receptor; T cells; cytokines; inflammation

Conflict of interests. The authors declare no conflict of interests.

For citation: Peshkova I.О., Khoreva M.V., Gankovskaya L.V., Koltsova E.K. Analysis of the number and functional activity of T cells in AAA in mice lacking the IL-27 receptor. Immunologiya. 2022; 43 (1): 44–53. DOI: https://doi.org/10.33029/0206-4952-2022-43-1-44-53 (in Russian)

Authors’ contribution. Concept and design of the study – Peshkova I.O., Koltsova E.K.; collection and processing of material – Peshkova I.O.; statistical processing – Peshkova I.O.; text writing – Peshkova I.O., Koltsova E.K., Khoreva M.V.; editing – Peshkova I.O., Koltsova E.K., Khoreva M.V., Gankovskaya L.V.

References

1. Nordon I.M., Hinchliffe R.J., Loftus I.M., Thompson M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 2011; 8 (2): 92–102. DOI: https://doi.org/10.1038/nrcardio.2010.180

2. Altobelli E., Rapacchietta L., Profeta V.F., Fagnano R. Risk Factors for abdominal aortic aneurysm in population-based studies: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health. 2018; 15 (12). DOI: https://doi.org/10.3390/ijerph15122805

3. Kim H.O., Yim N.Y., Kim J.K., Kang Y.J., Lee B.C. Endovascular aneurysm repair for abdominal aortic aneurysm: a comprehensive review. Korean J. Radiol. 2019; 20 (8): 1247–65. DOI: https://doi.org/10.3348/kjr.2018.0927

4. Lindeman J.H., Matsumura J.S. Pharmacologic management of aneurysms. Circ. Res. 2019; 124 (4): 631–46. DOI: https://doi.org/10.1161/CIRCRESAHA.118.312439

5. Yuan Z., Lu Y., Wei J., Wu J., Yang J., Cai Z. Abdominal aortic aneurysm: roles of inflammatory cells. Front. Immunol. 2020; 11: 609161. DOI: https://doi.org/10.3389/fimmu.2020.609161

6. Golledge J., Krishna S.M., Wang Y. Mouse models for abdominal aortic aneurysm. Br. J. Pharmacol. 2020. DOI: https://doi.org/10.1111/bph.15260

7. Daugherty A., Manning M.W., Cassis L.A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 2000; 105 (11): 1605–12. DOI: https://doi.org/10.1172/JCI7818

8. Liu J., Lu H., Howatt D.A., Balakrishnan A., Moorleghen J.J., Sorci-Thomas M., et al. Associations of ApoAI and ApoB-containing lipoproteins with AngII-induced abdominal aortic aneurysms in mice. Arterioscler. Thromb. Vasc. Biol. 2015; 35 (8): 1826–34. DOI: https://doi.org/10.1161/ATVBAHA.115.305482

9. Nikolaeva T.N., Kozlov V.V., Kozhevnikova T.N., Grigor’eva E.A., Sosnovskaya O.Yu., Cheknev S.B., Sanin A.V., Pronin A.V. Study of the immune response and metabolism state using experimental models of hyperlipidemia and metabolic syndrome. Immunologiya. 2021; 43 (4): 337–45. DOI: https://doi.org/10.33029/0206-4952-2021-42-4-337-345 (in Russian)

10. Pueyo M.E., Gonzalez W., Nicoletti A., Savoie F., Arnal J.F., Michel J.B. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2000; 20 (3): 645–51. DOI: https://doi.org/10.1161/01.atv.20.3.645

11. Sahar S., Dwarakanath R.S., Reddy M.A., Lanting L., Todorov I., Natarajan R. Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. Circ. Res. 2005; 96 (10): 1064–71. DOI: https://doi.org/10.1161/01.RES.0000168210.10358.f4

12. Peshkova I.O., Aghayev T., Fatkhullina A.R., Makhov P., Titerina E.K., Eguchi S., et al. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat. Commun. 2019; 10 (1): 5046. DOI: https://doi.org/10.1038/s41467-019-13017-4

13. Yoshida H., Hunter C.A. The immunobiology of interleukin-27. Annu. Rev. Immunol. 2015; 33: 417–43. DOI: https://doi.org/10.1146/annurev-immunol-032414-112134

14. Yoshida H., Hamano S., Senaldi G., Covey T., Faggioni R., Mu S., et al. WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity. 2001; 15 (4): 569–78. DOI: https://doi.org/10.1016/s1074-7613(01)00206-0

15. Yoshimoto T., Yoshimoto T., Yasuda K., Mizuguchi J., Nakanishi K. IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J. Immunol. 2007; 179 (7): 4415–23. DOI: https://doi.org/10.4049/jimmunol.179.7.4415

16. Diveu C., McGeachy M.J., Boniface K., Stumhofer J.S., Sathe M., Joyce-Shaikh B., et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J. Immunol. 2009; 182 (9): 5748–56. DOI: https://doi.org/10.4049/jimmunol.0801162

17. Pot C., Jin H., Awasthi A., Liu S.M., Lai C.Y., Madan R., et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 2009; 183 (2): 797–801. DOI: https://doi.org/10.4049/jimmunol.0901233

18. Pflanz S., Hibbert L., Mattson J., Rosales R., Vaisberg E., Bazan J.F., et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 2004; 172 (4): 2225–31. DOI: https://doi.org/10.4049/jimmunol.172.4.2225

19. Wang S., Miyazaki Y., Shinozaki Y., Yoshida H. Augmentation of antigen-presenting and Th1-promoting functions of dendritic cells by WSX-1(IL-27R) deficiency. J. Immunol. 2007; 179 (10): 6421–8. DOI: https://doi.org/10.4049/jimmunol.179.10.6421

20. Furusawa J., Mizoguchi I., Chiba Y., Hisada M., Kobayashi F., Yoshida H., et al. Promotion of expansion and differentiation of hematopoietic stem cells by interleukin-27 into myeloid progenitors to control infection in emergency myelopoiesis. PLoS Pathog. 2016; 12 (3): e1005507. DOI: https://doi.org/10.1371/journal.ppat.1005507

21. Seita J., Asakawa M., Ooehara J., Takayanagi S., Morita Y., Watanabe N., et al. Interleukin-27 directly induces differentiation in hematopoietic stem cells. Blood. 2008; 111 (4): 1903–12. DOI: https://doi.org/10.1182/blood-2007-06-093328

22. Galkina E., Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu. Rev. Immunol. 2009; 27: 165–97. DOI: https://doi.org/10.1146/annurev.immunol.021908.132620

23. Balmasova I.P., Tsarev V.N., Yushchuk E.N., Dorovskikh A.S., Malova E.S., Karakov K.G., Elbek’yan K.S., Arutyunov S.D. Periodontal diseases and atherosclerosis: microecological, metabolic and immunological mechanisms of interconnection. Immunologiya. 2020; 41 (4): 370–80. DOI: https://doi.org/10.33029/0206-4952-2020-41-4-370-380 (in Russian)

24. Schonbeck U., Sukhova G.K., Gerdes N., Libby P. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am. J. Pathol. 2002; 161 (2): 499–506. DOI: https://doi.org/10.1016/S0002-9440(10)64206-X

25. Galle C., Schandene L., Stordeur P., Peignois Y., Ferreira J., Wautrecht J.C., et al. Predominance of type 1 CD4+ T cells in human abdominal aortic aneurysm. Clin. Exp. Immunol. 2005; 142 (3): 519–27. DOI: https://doi.org/10.1111/j.1365-2249.2005.02938.x

26. Hirase T., Hara H., Miyazaki Y., Ide N., Nishimoto-Hazuku A., Fujimoto H., et al. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am. J. Physiol. Heart Circ. Physiol. 2013; 305 (3): H420–9. DOI: https://doi.org/10.1152/ajpheart.00198.2013

27. Koltsova E.K., Kim G., Lloyd K.M., Saris C.J., von Vietinghoff S., Kronenberg M., et al. Interleukin-27 receptor limits atherosclerosis in Ldlr-/-mice. Circ. Res. 2012; 111 (10): 1274–85. DOI: https://doi.org/10.1161/CIRCRESAHA.112.277525

28. Peshkova I.O., Fatkhullina A.R., Mikulski Z., Ley K., Koltsova E.K. IL-27R signaling controls myeloid cells accumulation and antigen-presentation in atherosclerosis. Sci. Rep. 2017; 7 (1): 2255. DOI: https://doi.org/10.1038/s41598-017-01828-8

29. Mellak S., Ait-Oufella H., Esposito B., Loyer X., Poirier M., Tedder T.F., et al. Angiotensin II mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe-/-mice. Arterioscler. Thromb. Vasc. Biol. 2015; 35 (2): 378–88. DOI: https://doi.org/10.1161/ATVBAHA.114.304389

30. Teo F.H., de Oliveira R.T.D., Villarejos L., Mamoni R.L., Altemani A., Menezes F.H., et al. Characterization of CD4(+) T cell subsets in patients with abdominal aortic aneurysms. Mediators Inflamm. 2018; 2018: 6967310. DOI: https://doi.org/10.1155/2018/6967310

31. Wei Z., Wang Y., Zhang K., Liao Y., Ye P., Wu J., et al. Inhibiting the Th17/IL-17A-related inflammatory responses with digoxin confers protection against experimental abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2014; 34 (11): 2429–38. DOI: https://doi.org/10.1161/ATVBAHA.114.304435

32. Juvonen J., Surcel H.M., Satta J., Teppo A.M., Bloigu A., Syrjala H., et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 1997; 17 (11): 2843–7. DOI: https://doi.org/10.1161/01.atv.17.11.2843

33. Middleton R.K., Lloyd G.M., Bown M.J., Cooper N.J., London N.J., Sayers R.D. The pro-inflammatory and chemotactic cytokine microenvironment of the abdominal aortic aneurysm wall: a protein array study. J. Vasc. Surg. 2007; 45 (3): 574–80. DOI: https://doi.org/10.1016/j.jvs.2006.11.020

34. Xiong W., Zhao Y., Prall A., Greiner T.C., Baxter B.T. Key roles of CD4+ T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model. J. Immunol. 2004; 172 (4): 2607–12. DOI: https://doi.org/10.4049/jimmunol.172.4.2607

35. King V.L., Lin A.Y., Kristo F., Anderson T.J., Ahluwalia N., Hardy G.J., et al. Interferon-gamma and the interferon-inducible chemokine CXCL10 protect against aneurysm formation and rupture. Circulation. 2009; 119 (3): 426–35. DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.785949

36. Xiong W., MacTaggart J., Knispel R., Worth J., Persidsky Y., Baxter B.T. Blocking TNF-alpha attenuates aneurysm formation in a murine model. Journal of immunology. 2009; 183 (4): 2741–6. DOI: https://doi.org/10.4049/jimmunol.0803164

37. Xanthoulea S., Thelen M., Pottgens C., Gijbels M.J., Lutgens E., de Winther M.P. Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice. PLoS One. 2009; 4 (7): e6113. DOI: https://doi.org/10.1371/journal.pone.0006113

38. Shimizu K., Shichiri M., Libby P., Lee R.T., Mitchell R.N. Th2-predominant inflammation and blockade of IFN-gamma signaling induce aneurysms in allografted aortas. J. Clin. Invest. 2004; 114 (2): 300–8. DOI: https://doi.org/10.1172/JCI19855

39. Xu J., Ehrman B., Graham L.M., Eagleton M.J. Interleukin-5 is a potential mediator of angiotensin II-induced aneurysm formation in apolipoprotein E knockout mice. J. Surg. Res. 2012; 178 (1): 512–8. DOI: https://doi.org/10.1016/j.jss.2011.12.016

40. Romain M., Taleb S., Dalloz M., Ponnuswamy P., Esposito B., Perez N., et al. Overexpression of SOCS3 in T lymphocytes leads to impaired interleukin-17 production and severe aortic aneurysm formation in mice – brief report. Arterioscler. Thromb. Vasc. Biol. 2013; 33 (3): 581–4. DOI: https://doi.org/10.1161/ATVBAHA.112.300516

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»