Peripheral blood B-lymphocyte subpopulations coexpressing CD5 and chemokine receptors in patients with chronic obstructive pulmonary disease

Abstract

Introduction. Autoantibodies to the lung cells, cell components, and extracellular matrix proteins were found in the lung tissue of patients with chronic obstructive pulmonary disease (COPD). CD5+ B-lymphocytes may be a significant source of these autoantibodies. However, the quantitative changes and the ability to migrate to the site of inflammation of this subpopulation of lymphocytes in patients with COPD remain unclear.

The aim of the study was to determine the quantitative changes in the subpopulations of B-lymphocytes expressing CD5 and chemokine receptors in the peripheral blood of patients with COPD.

Material and methods. The current study involved 51 smoking patients with COPD, 21 healthy smokers and 20 healthy non-smokers. Coexpression of CD5 and chemokine receptors CXCR3, CXCR4, CXCR5, and CCR7 in the peripheral blood was assessed using flow cytometry.

Results. There was a significant increase in the percentage of blood СD5+ B-cells, as well as B-lymphocytes coexpressing CD5 and CXCR3 in smoking patients with COPD compared with healthy smokers and healthy non-smokers. The proportion of peripheral blood B-cells expressing chemokine receptor CXCR3 but lacking CD5 was also higher in COPD patients than in healthy smokers and healthy non-smokers. The percentage of CD5+CXCR3high B-cells was increased in COPD patients with GOLD stages 3–4 compared with patients having GOLD stage 2. CAT score that denotes quality of life of COPD patients was positively correlated with the proportion of blood CD5+CXCR3high and CD5-CXCR3high B-lymphocytes. There were no differences in the proportion of CD5+ and CD5 B-lymphocytes expressing chemokine receptors CXCR4, CXCR5 and CCR7 between patients with COPD and healthy subjects. In all the three subject groups, a higher percentage of CD5+ B-cells expressing CXCR3 and CXCR4 and a lower percentage of CD5+ B-cells expressing CXCR5 was observed compared with the proportion of CD5 B-lymphocytes positive for corresponding receptors.

Conclusion. The results of the study demonstrate changes in the profile of B-lymphocyte chemokine receptors in peripheral blood of COPD patients depending on CD5 coexpression.

Keywords:B-lymphocytes; chemokine receptors; chronic obstructive pulmonary disease; CD5; CXCR3; CXCR4; CXCR5; CCR7

For citation: Kadushkin A.G., Tahanovich A.D., Movchan L.V., Zafranskaya M.M., Dziadzichkina V.V., Shman T.V. Peripheral blood B-lymphocyte subpopulations coexpressing CD5 and chemokine receptors in patients with chronic obstructive pulmonary disease. Immunologiya. 2022; 43 (2): 197–207. DOI: https://doi.org/10.33029/0206-4952-2022-43-2-197-207 (in Russian)

Funding. The study was supported by the Belarusian State Scientific Program «Fundamental and Applied Sciences for Medicine» (grant number 2.18).

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The concept and design of the study – Kadushkin A.G., Tahanovich A.D., Shman T.V.; conducting experiments – Kadushkin A.G., Movchan L.V., Zafranskaya M.M.; analysis and statistical processing of data – Kadushkin A.G., Dziadzichkina V.V.; text writing, editing – Kadushkin A.G., Tahanovich A.D., Shman T.V.

References

1. Barnes P.J. COPD 2020: new directions needed. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020; 319 (5): L884–6. PMID: 33050739. DOI: https://doi.org/10.1152/ajplung.00473.2020

2. Kadushkin A., Tahanovich A., Movchan L., Levandovskaya O., Shman T. Nortriptyline enhances corticosteroid sensitivity of blood T cells from patients with chronic obstructive pulmonary disease. J. Physiol. Pharmacol. 2021; 72 (5): 793–805. PMID: 35288481. DOI: https://doi.org/10.26402/jpp.2021.5.14

3. Kadushkin A., Tahanovich A., Movchan L., Talabayeva E., Plastinina A., Shman T. Azithromycin modulates release of steroid-insensitive cytokines from peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Adv. Respir. Med. 2022; 90 (1): 17–27. PMID: 35072213. DOI: https://doi.org/10.5603/ARM.a2022.0002

4. Hogg J.C., Chu F., Utokaparch S., Woods R., Elliott W.M., Buzatu L., Cherniack R.M., Rogers R.M., Sciurba F.C., Coxson H.O., Paré P.D. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350 (26): 2645–53. PMID: 15215480. DOI: https://doi.org/10.1056/NEJMoa032158

5. Seys L.J., Verhamme F.M., Schinwald A., Hammad H., Cunoosamy D.M., Bantsimba-Malanda C., Sabirsh A., McCall E., Flavell L., Herbst R., Provoost S., Lambrecht B.N., Joos G.F., Brusselle G.G., Bracke K.R. Role of B cell-activating factor in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015; 192 (6): 706–18. PMID: 26266827. DOI: https://doi.org/10.1164/rccm.201501-0103OC

6. Tomankova T., Kriegova E., Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 308 (7): L603–18. PMID: 25637606. DOI: https://doi.org/10.1152/ajplung.00203.2014

7. Nie L., Xiang R.L., Liu Y., Zhou W.X., Jiang L., Lu B., Pang B.S., Cheng D.Y., Gao J.M. Acute pulmonary inflammation is inhibited in CXCR3 knockout mice after short-term cigarette smoke exposure. Acta Pharmacol. Sin. 2008; 29 (12): 1432–9. PMID: 19026162. DOI: https://doi.org/10.1111/j.1745-7254.2008.00899.x

8. Müller G., Höpken U.E., Lipp M. The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol. Rev. 2003; 195: 117–35. Erratum in: Immunol. Rev. 2003; 196: 265. PMID: 12969315. DOI: https://doi.org/10.1034/j.1600-065x.2003.00073.x

9. Roos A.B., Sandén C., Mori M., Bjermer L., Stampfli M.R., Erjefält J.S. IL-17A Is elevated in end-stage chronic obstructive pulmonary disease and contributes to cigarette smoke-induced lymphoid neogenesis. Am. J. Respir. Crit. Care Med. 2015; 191 (11): 1232–41. PMID: 25844618. DOI: https://doi.org/10.1164/rccm.201410-1861OC

10. Demoor T., Bracke K.R., Vermaelen K.Y., Dupont L., Joos G.F., Brusselle G.G. CCR7 modulates pulmonary and lymph node inflammatory responses in cigarette smoke-exposed mice. J. Immunol. 2009; 183 (12): 8186–94. PMID: 19923454. DOI: https://doi.org/10.4049/jimmunol.0902015

11. Polverino F., Seys L.J., Bracke K.R., Owen C.A. B cells in chronic obstructive pulmonary disease: moving to center stage. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016; 311 (4): L687–95. PMID: 27542809. DOI: https://doi.org/10.1152/ajplung.00304.2016

12. Costa C., Traves S.L., Tudhope S.J., Fenwick P.S., Belchamber K.B., Russell R.E., Barnes P.J., Donnelly L.E. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD. Eur. Respir. J. 2016; 47 (4): 1093–102. PMID: 26965295. DOI: https://doi.org/10.1183/13993003.01642-2015

13. Taher T.E., Bystrom J., Mignen O., Pers J.O., Renaudineau Y., Mageed R.A. CD5 and B lymphocyte responses: multifaceted effects through multitudes of pathways and channels. Cell. Mol. Immunol. 2020; 17 (11): 1201–3. PMID: 32612151. DOI: https://doi.org/10.1038/s41423-020-0490-z

14. Garaud S., Taher T.E., Debant M., Burgos M., Melayah S., Berthou C., Parikh K., Pers J.O., Luque-Paz D., Chiocchia G., Peppelenbosch M., Isenberg D.A., Youinou P., Mignen O., Renaudineau Y., Mageed R.A. CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes. Cell. Mol. Immunol. 2018; 15 (2): 158–70. PMID: 27499044. DOI: https://doi.org/10.1038/cmi.2016.42

15. Lushova A.A., Zheremyan E.A., Astakhova E.A., Spiridonova A.B., Byazrova M.G., Filatov A.V. B-lymphocyte subsets: functions and molecular markers. Immunologiya. 2019; 40 (6): 63–76. DOI: https://doi.org/10.24411/0206-4952-2019-16009 (in Russian)

16. Youinou P., Lydyard P.M. CD5+ B cells in nonorgan-specific autoimmune diseases: a fresh look. Lupus. 2001; 10 (8): 523–5. PMID: 11530992. DOI: https://doi.org/10.1191/096120301701549633

17. Agustí A., MacNee W., Donaldson K., Cosio M. Hypothesis: does COPD have an autoimmune component? Thorax. 2003; 58 (10): 832–4. PMID: 14514931. DOI: https://doi.org/10.1136/thorax.58.10.832

18. Ramos P.S., Shedlock A.M., Langefeld C.D. Genetics of autoimmune diseases: insights from population genetics. J. Hum. Genet. 2015; 60 (11): 657–64. PMID: 26223182. DOI: https://doi.org/10.1038/jhg. 2015.94

19. Yuan C., Chang D., Lu G., Deng X. Genetic polymorphism and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 1385–93. PMID: 28546746. DOI: https://doi.org/10.2147/COPD.S134161

20. Costenbader K.H., Karlson E.W. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus. 2006; 15 (11): 737–45. PMID: 17153844. DOI: https://doi.org/10.1177/0961203306069344

21. Polverino F., Laucho-Contreras M., Rojas Quintero J., Divo M., Pinto-Plata V., Sholl L., de-Torres J.P., Celli B.R., Owen C.A. Increased expression of A Proliferation-inducing Ligand (APRIL) in lung leukocytes and alveolar epithelial cells in COPD patients with non small cell lung cancer: a possible link between COPD and lung cancer? Multidiscip. Respir. Med. 2016; 11: 17. PMID: 27047662. DOI: https://doi.org/10.1186/s40248-016-0051-6

22. Lee D.S.W., Rojas O.L., Gommerman J.L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 2021; 20: 179–99. PMID: 33324003. DOI: https://doi.org/10.1038/s41573-020-00092-2

23. Lee S.H., Goswami S., Grudo A., Song L.Z., Bandi V., Goodnight-White S., Green L., Hacken-Bitar J., Huh J., Bakaeen F., Coxson H.O., Cogswell S., Storness-Bliss C., Corry D.B., Kheradmand F. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat. Med. 2007; 13 (5): 567–9. PMID: 17450149. DOI: https://doi.org/10.1038/nm1583

24. Núñez B., Sauleda J., Antó J.M., Julià M.R., Orozco M., Monsó E., Noguera A., Gómez F.P., Garcia-Aymerich J., Agustí A.; PAC-COPD Investigators. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2011; 183 (8): 1025–31. PMID: 21097696. DOI: https://doi.org/10.1164/rccm.201001-0029OC

25. Kirkham P.A., Caramori G., Casolari P., Papi A.A., Edwards M., Shamji B., Triantaphyllopoulos K., Hussain F., Pinart M., Khan Y., Heinemann L., Stevens L., Yeadon M., Barnes P.J., Chung K.F., Adcock I.M. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2011; 184 (7): 796–802. PMID: 21965015. DOI: https://doi.org/10.1164/rccm.201010-1605OC

26. Gantsev S.K., Rustamkhanov R.A., Gantsev K.S., Kzyrgalin S.R. Tertiary lymphoid structures (lymphoid neogenesis). Immunologiya. 2019; 40 (2): 58–63. DOI: https://doi.org/10.24411/0206-4952-2019-12008 (in Russian)

27. Gosman M.M., Willemse B.W., Jansen D.F., Lapperre T.S., van Schadewijk A., Hiemstra P.S., Postma D.S., Timens W., Kerstjens H.A.; Groningen and Leiden Universities Corticosteroids in Obstructive Lung Disease Study Group. Increased number of B-cells in bronchial biopsies in COPD. Eur. Respir. J. 2006; 27 (1): 60–4. PMID: 16387936. DOI: https://doi.org/10.1183/09031936.06.00007005

28. van der Strate B.W., Postma D.S., Brandsma C.A., Melgert B.N., Luinge M.A., Geerlings M., Hylkema M.N., van den Berg A., Timens W., Kerstjens H.A. Cigarette smoke-induced emphysema: a role for the B cell? Am. J. Respir. Crit. Care Med. 2006; 173 (7): 751–8. PMID: 16399994. DOI: https://doi.org/10.1164/rccm.200504-594OC

29. Faner R., Cruz T., Casserras T., López-Giraldo A., Noell G., Coca I., Tal-Singer R., Miller B., Rodriguez-Roisin R., Spira A., Kalko S.G., Agustí A. Network analysis of lung transcriptomics reveals a distinct B-cell signature in emphysema. Am. J. Respir. Crit. Care Med. 2016; 193 (11): 1242–53. PMID: 26735770. DOI: https://doi.org/10.1164/rccm.201507-1311OC

30. Karagiannis K., Proklou A., Tsitoura E., Lasithiotaki I., Kalpadaki C., Moraitaki D., Sperelakis I., Kontakis G., Antoniou K.M., Tzanakis N. Impaired mRNA expression of the migration related chemokine receptor CXCR4 in mesenchymal stem cells of COPD patients. Int. J. Inflam. 2017; 2017: 6089425. PMID: 28804668. DOI: https://doi.org/10.1155/2017/6089425

31. Möhle R., Failenschmid C., Bautz F., Kanz L. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia. 1999; 13 (12): 1954–9. PMID: 10602415. DOI: https://doi.org/10.1038/sj.leu.2401602

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»