Anosmia in COVID-19 and allergic rhinitis. Effect of masking on the severity of symptoms

Abstract

SARS-CoV-2 is the cause of COVID-19, which has a serious effect on the lower respiratory system. COVID-19 causes bilateral pneumonia and acute respiratory syndrome.

Smell disorders are important diagnostic symptoms of COVID-19. This symptom is detected in about 90 % of cases. Anosmia may be the first or even the only symptom and may appear before other symptoms of SARS-CoV-2 infection. In the context of the COVID-19 epidemic, anosmia can be considered a clinical diagnostic criterion when laboratory tests are not available. The sense of smell is one of the most important senses needed to gain information about the environment. Anosmia can occur in both COVID-19 and allergic rhinitis (AR), which can make it difficult to detect the origin of these symptoms and make a diagnosis in the context of the COVID-19 pandemic.

Research results indicate AR is not an aggravating factor for COVID-19. Comorbidity of AR does not affect the reduction of the sense of smell in patients with COVID-19. Patients with AR are recommended to use antihistamines and intranasal corticosteroids for relief of symptoms. Control of AR symptoms can help prevent the spread of SARS-CoV-2 infection. It can be assumed that both local and oral corticosteroids at COVID-19 can be regarded as effective in the treatment of olfactory dysfunction. To restore the sense of smell in patients with AR and COVID-19, experts recommend regular olfactory training, which, at the moment, is the only modern scientifically based therapy for restoring post-viral loss of smell.

The use of face masks and respirators during a pandemic aims to minimize exposure to allergens and the SARS-CoV-2 virus. However, prolonged wearing of masks and respirators makes breathing even more difficult with rhinitis caused by AR or COVID-19, which reduces the quality of life and worsens the clinical picture.

Keywords:COVID-19; SARS-CoV-2; allergy; anosmia; allergic rhinitis; review; masks

For citation: Shcherbakov A.I., Stukolova O.A., Tutelyan A.V., Ploskireva А.А., Akimkin V.G. Anosmia in COVID-19 and allergic rhinitis. Effect of masking on the severity of symptoms. Immunologiya. 2022; 43 (2): 224–34. DOI: https://doi.org/10.33029/0206-4952-2022-43-2-224-234 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Author’s contribution. Concept and design of study – Shcherbakov A.I., Stukolova O.A.; search and analysis literature data, drafting of the article – Shcherbakov A.I.; critical revision of article draft – Stukolova O.A.; final approval of the version to be published – Tutelyan A.V., Ploskireva А.А., Akimkin V.G.

References

1. Dror A.A., Eisenbach N., Marshak T., Layous E., Zigron A., Shivatzki S., Morozov N.G., Taiber S., Alon E.E., Ronen O., Zusman E., Srouji S., Sela E. Reduction of allergic rhinitis symptoms with face mask usage during the COVID-19 pandemic. J. Allergy Clin. Immunol. Pract. 2020; 8 (10): 3590–3. DOI: https://doi.org/10.1016/j.jaip.2020.08.035

2. Ferreli F., Gaino F., Russo E., Di Bari M., Pirola F., Costantino A., Malvezzi L., De Virgilio A., Colombo G., Paoletti G., Morenghi E., Canonica G.W., Spriano G., Heffler E., Mercante G. Clinical presentation at the onset of COVID-19 and allergic rhinoconjunctivitis. J. Allergy Clin. Immunol. Pract. 2020; 8 (10): 3587–9. DOI: https://doi.org/10.1016/j.jaip.2020.08.009

3. Dayal A.K., Sinha V. Trend of allergic rhinitis post COVID-19 pandemic: a retrospective observational study. Indian J. Otolaryngol. Head Neck Surg. 2022; 74: 50–2. DOI: https://doi.org/10.1007/s12070-020-02223-y

4. Mann N.M., Lafreniere D. Anosmia and nasal sinus disease. Otolaryngol. Clin. North Am. 2004; 37 (2): 289–300. DOI: https://doi.org/10.1016/S0030-6665(03)00157-9

5. Kakodkar P., Kaka N., Baig M.N. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus. 2020; 12 (4): e7560. DOI: https://doi.org/10.7759/cureus.7560

6. Foster K.J., Jauregui E., Tajudeen B., Bishehsari F., Mahdavinia M. Smell loss is a prognostic factor for lower severity of coronavirus disease 2019. Ann. Allergy Asthma Immunol. 2020; 125 (4): 481–3. DOI: https://doi.org/10.1016/j.anai.2020.07.023

7. Suzaki I., Kobayashi H. Coronavirus disease 2019 and nasal conditions: a review of current evidence. In Vivo. 2021; 35 (3): 1409–17. DOI: https://doi.org/10.21873/invivo.12393

8. Scadding G.K., Hellings P.W., Bachert C., Bjermer L., Diamant Z., Gevaert P., Kjeldsen A., Kleine-Tebbe J., Klimek L., Muraro A., Roberts G., Steinsvik A., Wagenmann M., Wahn U. Allergic respiratory disease care in the COVID-19 era: A EUFOREA statement. World Allergy Organ. J. 2020; 13 (5): 100124. DOI: https://doi.org/10.1016/j.waojou.2020.100124

9. Hopkins C., Surda P., Whitehead E., Kumar B.N. Early recovery following new onset anosmia during the COVID-19 pandemic an observational cohort study. J. Otolaryngol. Head Neck Surg. 2020; 49 (1): 26. DOI: https://doi.org/10.1186/s40463-020-00423-8

10. Churyukina E.V., Ukhanova O.P. Modern medical and diagnostic tools for assessing nasal function and olfactory disorders in patients with allergic rhinitis. Complex therapy algorithm. RMZh. 2020; 28 (12): 56–60. (in Russian)

11. Han A.Y., Mukdad L., Long J.L., Lopez I.A. Anosmia in COVID-19: mechanisms and significance. Chem. Senses. 2020; 45: 423–8. DOI: https://doi.org/10.1093/chemse/bjaa040

12. Radulesco T., Verillaud B., Béquignon E., Papon J.F., Jankowski R., Le Taillandier De Gabory L., Dessi P., Coste A., Serrano E., Vergez S., Simon F., Couloigner V., Rumeau C., Michel J.; French Association of Rhinology (AFR), French Society of Otorhinolaryngology, Head and Neck Surgery (SFORL). COVID-19 and rhinology, from the consultation room to the operating theatre. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2020; 137 (4): 309–14. DOI: https://doi.org/10.1016/j.anorl.2020.04.013

13. Primov-Fever A., Amir O., Roziner I., Maoz-Segal R., Alon E.E., Yakirevitch A. How face masks influence the sinonasal quality of life during the COVID-19 pandemic. Eur. Arch. Otorhinolaryngol. 2021; 278 (12): 4805–11. DOI: https://doi.org/10.1007/s00405-021-06752-2

14. Hellings P.W., Klimek L., Cingi C., Agache I., Akdis C., Bachert C., Bousquet J., Demoly P., Gevaert P., Hox V., Hupin C., Kalogjera L., Manole F., Mösges R., Mullol J., Muluk N.B., Muraro A., Papadopoulos N., Pawankar R., Rondon C., Rundenko M., Seys S.F., Toskala E., Van Gerven L., Zhang L., Zhang N., Fokkens W.J. Non-allergic rhinitis: position paper of the European Academy of Allergy and Clinical Immunology. Allergy. 2017; 72 (11): 1657–65. DOI: https://doi.org/10.1111/all.13200

15. van Riel D., Verdijk R., Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 2015; 235 (2): 277–87. DOI: https://doi.org/10.1002/path.4461

16. Attems J., Walker L., Jellinger K.A. Olfaction and aging: a mini-review. Gerontology. 2015; 61 (6): 485–90. DOI: https://doi.org/10.1159/000381619

17. Leung C.T., Coulombe P.A., Reed R.R. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 2007; 10 (6): 720–6. DOI: https://doi.org/10.1038/nn1882

18. Svistushkin V.M., Nikiforova G.N., Artamonova P.S., Shevchik E.A. Modern possibilities of pathogenetic therapy of patients with allergic rhinitis. Meditsinskiy sovet. 2020; 6: 101–6. DOI: https://doi.org/10.21518/2079-701X-2020-6-101-106 (in Russian)

19. Abdullina A.D., Sultanov R.A. Modern principles of treatment of allergic rhinitis. In: Innovative technologies in science and education: collection of articles of the V International Scientific Conference. Penza, 2017: 224–6. (in Russian)

20. Kuz’menok A.A. Assessment of the quality of life of students with allergic rhinitis, epidemiological and clinical features of the disease. Smolenskiy meditsinskiy al’manakh. 2020; 1: 174–8. (in Russian)

21. Smirnova O.V., Elmanova N.G. Characterization of cellular immunity in patients with obstructive jaundice caused by cholelithiasis. Immunologiya. 2021; 42 (6): 655–61. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-655-661 (in Russian)

22. Miwa T., Ikeda K., Ishibashi T., Kobayashi M., Kondo K., Matsuwaki Y., Ogawa T., Shiga H., Suzuki M., Tsuzuki K., Furuta A., Motoo Y., Fujieda S., Kurono Y. Clinical practice guidelines for the management of olfactory dysfunction – secondary publication. Auris Nasus Larynx. 2019; 46 (5): 653–62. DOI: https://doi.org/10.1016/j.anl.2019.04.002

23. Crisafulli U., Xavier A.M., Dos Santos F.B., Cambiaghi T.D., Chang S.Y., Porcionatto M., Castilho B.A., Malnic B., Glezer I. Topical dexamethasone administration impairs protein synthesis and neuronal regeneration in the olfactory epithelium. Front. Mol. Neurosci. 2018; 11: 50. DOI: https://doi.org/10.3389/fnmol.2018.00050

24. Jain N., Varman R., Tarbox J.A., Nguyen T. Biomolecular endotype factors involved in COVID-19 airway infectivity: a systematic review. Auris Nasus Larynx. 2021; 48 (1): 32–40. DOI: https://doi.org/10.1016/j.anl.2020.11.006

25. Gankovskaya L.V., Zinina E.V., Gankovsky V.A., Semushkin A.R. Changes in the expression of Toll-like receptors, cytokines and chemokines in the cells of the mucous membrane of the oropharynx in children with COVID-19. Immunologiya. 2021; 42 (3): 222–31. DOI: https://doi.org/10.33029/0206-4952-2021-42-3-222-231 (in Russian)

26. Masters P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006; 66: 193–292. DOI: https://doi.org/10.1016/S0065-3527(06)66005-3

27. Yao Y., Wang H., Liu Z. Expression of ACE2 in airways: implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin. Exp. Allergy. 2020; 50 (12): 1313–24. DOI: https://doi.org/10.1111/cea.13746

28. Chhapola Shukla S. ACE2 expression in allergic airway disease may decrease the risk and severity of COVID-19. Eur. Arch. Otorhinolaryngol. 2021; 278 (7): 2637–40. DOI: https://doi.org/10.1007/s00405-020-06408-7

29. Ravindra K., Goyal A., Mor S. Does airborne pollen influence COVID-19 outbreak? Sustain Cities Soc. 2021; 70: 102887. DOI: https://doi.org/10.1016/j.scs.2021.102887

30. Eggers M. Infectious disease management and control with povidone iodine. Infect. Dis. Ther. 2019; 8 (4): 581–93. DOI: https://doi.org/10.1007/s40121-019-00260-x

31. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10 223): 497–506. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

32. Qin R., He L., Yang Z., Jia N., Chen R., Xie J., Fu W., Chen H., Lin X., Huang R., Luo T., Liu Y., Yao S., Jiang M., Li J. Identification of parameters representative of immune dysfunction in patients with severe and fatal COVID-19 infection: a systematic review and meta-analysis. Clin. Rev. Allergy Immunol. 2022; Jan 18: 1–33. DOI: https://doi.org/10.1007/s12016-021-08908-8

33. Shahgolzari M., Yavari A., Arjeini Y., Miri S.M., Darabi A., Mozaffari Nejad A.S., Keshavarz M. Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. Gene Rep. 2021; 25: 101417. DOI: https://doi.org/10.1016/j.genrep.2021.101417

34. Mahmoodpoor A., Sanaie S., Roudbari F., Sabzevari T., Sohrabifar N., Kazeminasab S. Understanding the role of telomere attrition and epigenetic signatures in COVID-19 severity. Gene. 2022; 811: 146069. DOI: https://doi.org/10.1016/j.gene.2021.146069

35. Akimkin V.G., Tutel’yan A.V., Shulakova N.I., Voronin E.M. COVID-19 pandemic: a new round of antibiotic resistance. Infektsionnye bolezni. 2021; 19 (3): 133–8. DOI: https://doi.org/10.20953/1729-9225-2021-3-133-138 (in Russian)

36. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10 223): 507–13. DOI: https://doi.org/10.1016/S0140-6736(20)30211-7

37. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., Horoi M., Le Bon S.D., Rodriguez A., Dequanter D., Blecic S., El Afia F., Distinguin L., Chekkoury-Idrissi Y., Hans S., Delgado I.L., Calvo-Henriquez C., Lavigne P., Falanga C., Barillari M.R., Cammaroto G., Khalife M., Leich P., Souchay C., Rossi C., Journe F., Hsieh J., Edjlali M., Carlier R., Ris L., Lovato A., De Filippis C., Coppee F., Fakhry N., Ayad T., Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 2020; 277 (8): 2251–61. DOI: https://doi.org/10.1007/s00405-020-05965-1

38. Barillari M.R., Bastiani L., Lechien J.R., Mannelli G., Molteni G., Cantarella G., Coppola N., Costa G., Trecca E.M.C., Grillo C., La Mantia I., Chiesa-Estomba C.M., Vicini C., Saussez S., Nacci A., Cammaroto G. A structural equation model to examine the clinical features of mild-to-moderate COVID-19: a multicenter Italian study. J. Med. Virol. 2021; 93 (2): 983–94. DOI: https://doi.org/10.1002/jmv.26354

39. İşlek A., Balcı M.K. Evaluation of effects of chronic nasal steroid use on rhinological symptoms of COVID-19 with SNOT-22 questionnaire. Pharmacol. Rep. 2021; 73 (3): 781–5. DOI: https://doi.org/10.1007/s43440-021-00235-1

40. Doty R.L. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann. Neurol 2008; 63 (1): 7–15. DOI: https://doi.org/10.1002/ana.21327

41. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–80.e8. DOI: https://doi.org/10.1016/j.cell.2020.02.052

42. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARSCoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020; 92: 552–5. DOI: https://doi.org/10.1002/jmv.25728

43. Moein S.T., Hashemian S.M., Mansourafshar B., Khorram-Tousi A., Tabarsi P., Doty R.L. Smell dysfunction: a biomarker for COVID-19. Int. Forum Allergy Rhinol. 2020; 10 (8): 944–50. DOI: https://doi.org/10.1002/alr.22587

44. Booth T.F., Kournikakis B., Bastien N., Ho J., Kobasa D., Stadnyk L., Li Y., Spence M., Paton S., Henry B., Mederski B., White D., Low D.E., McGeer A., Simor A., Vearncombe M., Downey J., Jamieson F.B., Tang P., Plummer F. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 2005; 191 (9): 1472–7. DOI: https://doi.org/10.1086/429634

45. Meister T.L., Brüggemann Y., Todt D., Conzelmann C., Müller J.A., Groß R., Münch J., Krawczyk A., Steinmann J., Steinmann J., Pfaender S., Steinmann E. Virucidal efficacy of different oral rinses against Severe Acute Respiratory Syndrome Coronavirus 2. J. Infect. Dis. 2020; 222 (8): 1289–92. DOI: https://doi.org/10.1093/infdis/jiaa471

46. Kariwa H., Fujii N., Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Dermatology. 2006; 212 (suppl 1): 119–23. DOI: https://doi.org/10.1159/000089211

47. Kirk-Bayley J., Challacombe S., Sunkaraneni S., Combes J. The use of povidone iodine nasal spray and mouthwash during the current COVID-19 pandemic may protect healthcare workers and reduce cross infection. SSRN Electronic Journal. 2020. DOI: https://doi.org/10.2139/ssrn.3563092

48. Kawana R., Kitamura T., Nakagomi O., Matsumoto I., Arita M., Yoshihara N., Yanagi K., Yamada A., Morita O., Yoshida Y., Furuya Y., Chiba S. Inactivation of human viruses by povidone-iodine in comparison with other antiseptics. Dermatology. 1997; 195 (suppl 2): 29–35. DOI: https://doi.org/10.1159/000246027

49. Dexter F., Parra M.C., Brown J.R., Loftus R.W. Perioperative COVID-19 defense: an evidence-based approach for optimization of infection control and operating room management. Anesth. Analg. 2020; 131 (1): 37–42. DOI: https://doi.org/10.1213/ANE.0000000000004829

50. Frank S., Capriotti J., Brown S.M., Tessema B. Povidone-iodine use in sinonasal and oral cavities: a review of safety in the COVID-19 era. Ear Nose Throat J. 2020; 99: 586–93. DOI: https://doi.org/10.1177/0145561320932318

51. Abdel Meguid A.M., Abdel Motaleb A.A., Abdel Sadek A.M.I. Cryotherapy vs trichloroacetic acid 90% in treatment of common warts. J. Cosmet. Dermatol. 2019; 18: 608–13. DOI: https://doi.org/10.1111/jocd.12805

52. Mullol J., Alobid I., Mariño-Sánchez F., Izquierdo-Domínguez A., Marin C., Klimek L., Wang D.Y., Liu Z. The loss of smell and taste in the COVID-19 outbreak: a tale of many countries. Curr. Allergy Asthma Rep. 2020; 20 (10): 61. DOI: https://doi.org/10.1007/s11882-020-00961-1

53. Primov-Fever A., Amir O., Roziner I., Maoz-Segal R., Alon E.E., Yakirevitch A. How face masks influence the sinonasal quality of life during the COVID-19 pandemic. Eur. Arch. Otorhinolaryngol. 2021: 278: 4805–11. DOI: https://doi.org/10.1007/s00405-021-06752-2

54. Xie Z., Yang Y.X., Zhang H. Mask-induced contact dermatitis in handling COVID-19 outbreak. Contact Dermatitis. 2020; 83 (2): 166–67. DOI: https://doi.org/10.1111/cod.13599

55. Sinha S., Savitha B., Sardana K. «Mask vitiligo» secondary to frictional dermatitis from surgical masks. Contact Dermatitis. 2021; 85 (1): 121–3. DOI: https://doi.org/10.1111/cod.13813

56. Joffily L., Ungierowicz A., David A.G., Melo B., Brito C.L.T., Mello L., Santos P.S.C.D., Pezato R. The close relationship between sudden loss of smell and COVID-19. Braz. J. Otorhinolaryngol. 2020; 86 (5): 632–8. DOI: https://doi.org/10.1016/j.bjorl.2020.05.002

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»