Immunotherapeutic role of interferon-γ at tuberculosis


Tuberculosis remains one of the most wide-spreading infections and its treatment presents serious difficulties due to the development of drug resistance of the Mycobacterium tuberculosis and the distribution of HIV-associated tuberculosis. The reaction of the human immune system to tuberculosis infection is complex and multi-stage, depending on the immune response tension different variants of the immune response can develop and interferon-γ (IFN-γ) is one of the key factors in its implementation. M. tuberculosis has the ability to inhibit the synthesis of IFN-γ that contributes to the progression of tuberculosis disease. The synthetic IFN-γ eliminates the deficiency of endogenous interferon and improves the clinical and economic efficiency of tuberculosis therapy by accelerating the termination of bacterial excretion and restoration the normal function of the respiratory system including in HIV-associated tuberculosis.

Keywords:tuberculosis; interferon-gamma; immunity; immunotropic therapy; cytokines

For citation: Balasaniants G.S., Ruzanov D.Yu. Immunotherapeutic role of interferon-γ in tuberculosis. Immunologiya. 2022; 43 (3): 343–51. DOI: (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Search and analysis of literature, writing and editing of review – Balasaniants G.S.; search and analysis of literature, writing and editing of review – Ruzanov D.Yu.


1. World Health Organization. Global Tuberculosis Report, 2021. Geneva, Switzerland : WHO, 2021: 57 p.

2. Phthisiology: national guidelines. In: M.I. Perel’man (ed.). Moscow: GEOTAR-Media, 2007: 512 p. (in Russian)

3. Ribeiro R. Tuberculose; quimioterapia ou imunoterapia? [Tuberculosis, chemotherapy or immunotherapy?]. J. Med. (Oporto). 1948; 12 (292): 201–6. PMID: 18888651.

4. Mishin V.Yu., Zavrazhnov S.P., Mitronin A.V., Grigor’ev Yu.G., Aksanova K.I., Deykina O.N., Mishina A.V., Morozov I.A. Phthisiology: textbook. 2nd ed., revised and add. Moscow: GEOTAR-Media, 2015: 512 p. (in Russian)

5. Sukhanov D.S. Immunotropic therapy for tuberculosis infection. Terapevticheskiy arkhiv. 2013; 85 (3): 110–7. PMID: 23720855. (in Russian)

6. Lutcky A.А., Zhirkov A.А., Lobzin D.Yu., Rao M., Alekseeva L.A., Meyrer M., Lobzin Yu.V. Interferon-γ: biological function and application for study of cellular immune response. Zhurnal infektologii. 2015; 7 (4): 10–22. DOI: (in Russian)

7. Tebruegge M., Dutta B., Donath S., Ritz N., Forbes B., Camacho-Badilla K., Clifford V., Zufferey C., Robins-Browne R., Hanekom W., Graham S.M., Connell T., Curtis N. Mycobacteria-specific cytokine responses detect tuberculosis infection and distinguish latent from active tuberculosis. Am. J. Respir. Crit. Care Med. 2015; 192 (4): 485–99. DOI:

8. Ghanavi J., Farnia P., Farnia P., Velayati A.A. The role of interferon-gamma and interferon-gamma receptor in tuberculosis and nontuberculous mycobacterial infections. Int. J. Mycobacteriol. 2021; 10 (4): 349–57. DOI:

9. Ottenhoff T.H.M, Dass R.H., Yang N., Zhang M., Wong H.E.E., Sahiratmadja E., Khor Ch.Ch., Bacht A., van Creve R., Marzuki S., Seielstad M., van de Vosse E., Hibberd M.L. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS One. 2012; 7 (9): e45839. DOI:

10. Travar M., Petkovic M., Verhaz A. Type I, II, and III interferons: regulating immunity to Mycobacterium tuberculosis infection. Arch. Immunol. Ther. Exp. (Warsz.). 2016; 64 (1): 19–31. DOI:

11. Koval’chuk LV. Theory of inflammation in light of new data: development of I.I Mechnikov ideas. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2008; (5): 10–5. PMID: 19004278. (in Russian)

12. Il’inskaya I.F. Topical issues of rational interferon therapy in tuberculosis. Klinicheskaya Immunologiya. Allergologiya. Infectologiya. 2012; (3): 18–22. (in Russian)

13. Pravada N.S., Budritsky A.M. Complex therapy with the use of immune preparations in tuberculosis and interferon-gamma system. Vestnik VGMU. 2015; 4 (4): 5–14. (in Russian)

14. Master S.S., Rampini S.K., Davis A.S., Keller C., Ehlers S., Springer B., Timmins G.S., Sander P., Deretic V. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe. 2008; 3 (4): 224–32. DOI:

15. Salina T.Yu., Morozova T.I. Features of the production of interferon gamma in pulmonary tuberculosis. Tsitokiny i vospalenie. 2012; 11 (1): 96–100. (in Russian)

16. Bulat-Kardum L., Etokebe G.E., Knezevic J., Balen S., Matakovic-Mileusnic N., Zaputovic L., Pavelic J., Beg-Zec Z., Dembic Z. Interferon-gamma receptor-1 gene promoter polymorphisms (G-611A; T-56C) and susceptibility to tuberculosis. Scand. J. Immunol. 2006; 63 (2): 142–50. DOI:

17. Casanova J.L., Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 2002; 20: 581–620. DOI:

18. Sahiratmadja E., Alisjahbana B., de Boer T., Adnan I., Maya A., Danusantoso H., Nelwan R.H., Marzuki S., van der Meer J.W., van Crevel R., van de Vosse E., Ottenhoff T.H. Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect. Immun. 2007; 75 (2): 820–9. DOI:

19. Maslennikov A.A., Obolonkova N.I. Efficiency of Ingaron in the treatment of patients with destructive pulmonary bacteriologicaly proven tuberculosis. Nauchniy rezul’tat. Ser. Meditsina i farmatsiya. 2016; 2 [1 (7)]: 10–6. DOI: DOI: (in Russian)

20. Kiselev O.I., Ershov F.I., Deeva E.G. Interferon-gamma: a new cytokine in clinical practice. Ingaron. Moscow: Dimitreyd Grafik Grupp, 2007: 348 p. (in Russian)

21. Fortes A., Pereira K., Antas P.R., Franken C.L., Dalcolmo M., Ribeiro-Carvalho M.M., Cunha K.S., Geluk A., Kritski A., Kolk A., Klatser P., Sarno E.N., Ottenhoff T.H., Sampaio E.P. Detection of in vitro interferon-gamma and serum tumour necrosis factor-alpha in multidrug-resistant tuberculosis patients. Clin. Exp. Immunol. 2005; 141 (3): 541–8. DOI:

22. Nikulina E.L., Naslednikova I.O., Urazova O.I., Voronkova O.V., Novitsky V.V., Nekrasov E.V., Filinyuk O.V., Churina E.G., Mikheeva K.O., Khasanova R.R., Serebryakova V.A., Sukhalentseva N.A. Allelic polymorphism of IFNγ gene in patients with pulmonary tuberculosis. Meditsinskaya immunologiya. 2010; 12 (3): 259–64. DOI: (in Russian)

23. Li G., Yang F., He X., Liu Z., Pi J., Zhu Y., Ke X., Liu S., Ou M., Guo H., Zhang Z., Zeng G., Zhang G. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients. Microbes Infect. 2020; 22 (3): 119–26. DOI:

24. Berns S.A., Isakova J.A., Pekhtereva P.I. Therapeutic potential of interferon-gamma in tuberculosis. ADMET DMPK. 2022; 10 (1): 63–73. DOI:

25. Liang L., Shi R., Liu X., Yuan X., Zheng S., Zhang G., Wang W., Wang J., England K., Via L.E., Cai Y., Goldfeder L.C., Dodd L.E., Barry C.E., Chen R.Y. Interferon-gamma response to the treatment of active pulmonary and extra-pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 2017; 21 (10): 1145–9. DOI:

26. Abate G., Hoft D.F. Immunotherapy for tuberculosis: future prospects. Immunotargets Ther. 2016; 5: 37–45. DOI:

27. Condos R., Rom W.N., Schluger N.W. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet. 1997; 349 (9064): 1513–5. DOI:

28. Condos R., Hull F.P., Schluger N.W., Rom W.N., Smaldone G.C. Regional deposition of aerosolized interferon-gamma in pulmonary tuberculosis. Chest. 2004; 125 (6): 2146–55. DOI:

29. Dawson R., Condos R., Tse D., Huie M.L., Ress S., Tseng C.H., Brauns C., Weiden M., Hoshino Y., Bateman E., Rom W.N. Immunomodulation with recombinant interferon-gamma1b in pulmonary tuberculosis. PLoS One. 2009; 4 (9): e6984. DOI:

30. Park S.K., Cho S., Lee I.H., Jeon D.S., Hong S.H., Smego R.A. Jr, Cho S.N. Subcutaneously administered interferon-gamma for the treatment of multidrug-resistant pulmonary tuberculosis. Int. J. Infect. Dis. 2007; 11 (5): 434–40. DOI:

31. Gao X.F., Yang Z.W., Li J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: a systematic review. Int. J. Infect. Dis. 2011; 15 (9): e594–600. DOI:

32. WHO tuberculosis consolidated guidelines. Module 4: treatment. Treatment of drug-resistant tuberculosis. World Health Organization, 2021: 146 p. (in Russian)

33. Yola A., Sologub T., Nechaev V., Ivanov A. Immune-based therapy using gamma interferon ingaron in the treatment of HIV/AIDS patients with active pulmonary tuberculosis (PTB) not previously highly active antiretroviral therapy (HAART). Retrovirology. 2002; 3 (suppl. 1): S38. DOI:

34. Reljic R. IFN-gamma therapy of tuberculosis and related infections. J. Interferon Cytokine Res. 2007; 27 (5): 353–64. DOI:

35. Plavinsky S.L., Shabalkin P.I. Evaluation of the clinical and economic effectiveness of interferon-gamma in the treatment of tuberculosis. Epidemiologiya i infektsionnye bolezni. 2017; 22 (6): 276–80. DOI: (in Russian)

36. Order of the Government of the Russian Federation of 12.10.2019 No. 2406-r «On approval of the list of vital and essential medicines for 2020» as amended by Order of the Government of the Russian Federation of December 23, 2021 No. 3781-r effective from January 1, 2022 «List of vital and essential drugs for medical use for 2022». 2022. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

Musa R. Khaitov

Corresponding member of Russian Academy of Sciences, MD, Professor, Director of the NRC Institute of Immunology FMBA of Russia