Reprogramming of myeloid cells of the tumor microenvironment – a new approach in the immunotherapy of malignant neoplasms


Modern therapy of a cancer patient, especially immunotherapy, must take into account and overcome the immunosuppression created inside the tumor and, in general, in the body affected by a malignant neoplasm. Without overcoming immunosuppression, it is impossible to achieve effective elimination of malignant cells by the forces of immune mechanisms.

The immunosuppressive properties of the tumor microenvironment are formed by both malignant and non-malignant cells and the substances they produce. Myeloid cells, tumor-associated macrophages, intratumoral dendritic cells, and myeloid suppressors attracted by the tumor, play a significant role in creating an immunosuppressive milieu inside the tumor. These cells produce soluble inhibitors of immune responses such as IDO, TGF-β, IL-10, prostaglandins, and also exhibit on their surface molecules that have the ability to suppress immune cells, in particular, PD-L1/2 molecules that cause functional paralysis of T cells or even their death.

In this literature review, we consider the immunosuppressive properties of macrophages, dendritic cells, and other tumor-associated myeloid cells aiming to overcome this mechanism of immunosuppression during the treatment of cancer patients. We present an analysis of the literature and our own results of the correction of immunity by targeting of tumor myeloid cells. The presented data suggest that a correction of the tumor myeloid cells’ properties is new effective approach in the immunotherapy of malignant neoplasms.

Keywords:malignant neoplasm; microenvironment; immunosuppression; myeloid cells; reprogramming; immunotherapy

For citation: Ataullakhanov R.I., Ushakova E.I., Al Khudhur S.А., Pichugin A.V., Lebedeva E.S. Reprogramming of myeloid cells of the tumor microenvironment – a new approach in the immunotherapy of malignant neoplasms. Immunologiya. 2022; 43 (4): 375–88. DOI: (in Russian)

Funding. The study was supported by a grant from the Russian Science Foundation (project No. 20-15-00391).

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Concept, literature analysis, article writing – Ataullakhanov R.I.; literature analysis, article writing and editing – Ushakova E.I.; literature analysis, article writing – Al Khudur S.A.; literature analysis, article editing – Pichugin A.V.; literature analysis, article editing – Lebedeva E.S.


1.Zhang Y., Cheng S., Zhang M., Zhen L., Pang D., Zhang Q., Li Z. High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PLoS One. 2013; 8: e76147. DOI:

2.Xue Y., Tong L., Liu F.L., Liu A., Zeng S., Xiong Q., Yang Z., He X., Sun Y., Xu C. Tumor‑infiltrating M2 macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer. Oncol. Rep. 2019; 42: 581–94. DOI:

3.Kumar A.T., Knops A., Swendseid B., Martinez-Outschoom U., Harshyne L., Philp N., Rodeck U., Luginbuhl A., Cognetti D., Johnson J., Curry J. Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a meta-analysis. Front. Oncol. 2019; 9: 656. DOI:

4.Nishie A., Ono M., Shono T., Fukushi J., Otsubo M., Onoue H., Ito Y., Inamura T., Ikezaki K., Fukui M., Iwaki T., Kuwano M. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 1999; 5: 1107–13.

5.Torisu H., Ono M., Kiryu H., Furue M., Ohmoto Y., Nakayama J., Nishioka Y., Sone S., Kuwano M. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: Possible involvement of TNFα and IL-1α Int. J. Cancer. 2000; 85: 182–8. DOI:<182::AID-IJC6>3.0.CO;2-M

6.Cao J., Liu J., Xuan Z., Zhu X., Zhao X., Qian B.-Z. Prognostic role of tumour-associated macrophages and macrophage scavenger receptor 1 in prostate cancer: a systematic review and meta-analysis. Oncotarget. 2017; 8: 83 261–9. DOI:

7.Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006; 2: 213–9. DOI:

8.Ribatti D., Nico B., Crivellato E., Vacca A. Macrophages and tumor angiogenesis. Leukemia. 2007; 21: 2085–9. DOI:

9.Riabov V., Gudima A., Wang N., Mickley A., Orekhov A., Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front. Physiol. 2014; 5: 75. DOI:

10.Quintero-Fabián S., Arreola R., Becerril-Villanueva E., Torres-Romero J.C., Arana-Argáez V., Lara-Riegos J., Ramírez-Camacho M.A., Alvarez-Sánchez M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 2019; 9: 1370. DOI:

11.Landskron G., De La Fuente M., Thuwajit P., Thuwajit C., Hermoso M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014; 2014: 1–19. DOI:

12.Thomas S.J., Snowden J.A., Zeidler M.P., Danson S. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer. 2015; 113: 365–71. DOI:

13.Baker K.J., Houston A., Brint E. IL-1 Family members in cancer; two sides to every story. Front. Immunol. 2019; 10: 1197. DOI:

14.Xia L., Tan S., Zhou Y., Lin J., Wang H., Oyang L., Tian Y., Liu L., Su M., Wang H., Cao D., Liao Q. Role of the NFκB-signaling pathway in cancer. Onco Targets. Ther. 2018; 11: 2063–73. DOI:

15.Wang J., Li D., Cang H., Guo B. Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 2019; 8: 4709–21. DOI:

16.Oh S.A., Li M.O. TGF-β: guardian of T cell function. J. Immunol. 2013; 191: 3973–9. DOI:

17.Landskron G., De La Fuente M., Thuwajit P., Thuwajit C., Hermoso M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014; 2014: 1–19. DOI:

18.Corthay A. How do regulatory T cells work? Scand. J. Immunol. 2009; 70: 326–36. DOI:

19.Palazon A., Goldrath A.W., Nizet V., Johnson R.S. HIF transcription factors, inflammation, and immunity. Immunity. 2015; 41: 518–28. DOI:

20.Shimizu K., Iyoda T., Okada M., Yamasaki S., Fujii S.-I. Immune suppression and reversal of the suppressive tumor microenvironment. Int. Immunol. 2018; 30: 445–55. DOI:

21.Ceci C., Atzori M.G., Lacal P.M., Graziani G. Targeting tumor-associated macrophages to increase the efficacy of immune checkpoint inhibitors: a glimpse into novel therapeutic approaches for metastatic melanoma. Cancers (Basel). 2020; 12 (11): 3401. DOI:

22.Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41: 49–61. DOI:

23.Liguori M., Buracchi C., Pasqualini F., Bergomas F., Pesce S., Sironi M., Grizzi F., Mantovani A., Belgiovine C., Allavena P. Functional TRAIL receptors in monocytes and tumor-associated macrophages: a possible targeting pathway in the tumor microenvironment. Oncotarget. 2016; 7: 41 662–76. DOI:

24.Intlekofer A.M., Thompson C.B. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J. Leukoc. Biol. 2013; 94: 25–39. DOI:

25.Vandenborre K., Van Gool S.W., Kasran A., Ceuppens J.L., Boogaerts M.A., Vandenberghe P. Interaction of CTLA-4 (CD152) with CD80 or CD86 inhibits human T-cell activation. Immunology. 1999; 98: 413–21. DOI:

26.Popovic P.J., Zeh I.H.J., Ochoa J.B. Arginine and Immunity. J. Nutr. 2007; 137: 1681S–6S. DOI:

27.Czystowska-Kuzmicz M., Sosnowska A., Nowis D., Ramji K., Szajnik M., Chlebowska-Tuz J., Wolinska E., Gaj P., Grazul M., Pilch Z., et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun. 2019; 10: 1–16. DOI:

28.Rodriguez P.C., Quiceno D.G., Ochoa A.C. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2006; 109: 1568–73. DOI:

29.Priceman S.J., Sung J.L., Shaposhnik Z., Burton J.B., Torres-Collado A.X., Moughon D.L., Johnson M., Lusis A.J., Cohen D.A., Iruela-Arispe M.L., Wu L. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood. 2010; 115 (7): 1461–71. DOI:

30.Mok S., Koya R.C., Tsui C., Xu J., Robert L., Wu L., Graeber T., West B.L., Bollag G., Ribas A. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res. 2014; 74 (1): 153–61. DOI:

31.Dai X.M., Ryan G.R., Hapel A.J., Dominguez M.G., Russell R.G., Kapp S., Sylvestre V., Stanley E.R. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002; 99 (1): 111–20. DOI:

32.Li J., Chen K., Zhu L., Pollard J.W. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis. 2006; 44 (7): 328–35. DOI:

33.Kerkar S.P., Restifo N.P. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012; 72 (13): 3125–30. DOI:

34.Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009; 9 (3): 162–74. DOI:

35.Fujiwara T., Yakoub M.A., Chandler A., Christ A.B., Yang G., Ouerfelli O., Rajasekhar V.K., Yoshida A., Kondo H., Hata T., Tazawa H., Dogan Y., Moore M.A.S., Fujiwara T., Ozaki T., Purdue E., Healey J.H. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol. Cancer Ther. 2021; 20 (8): 1388–99. DOI:

36.Wesolowski R., Sharma N., Reebel L., Rodal M.B., Peck A., West B.L., Marimuthu A., Severson P., Karlin D.A., Dowlati A., Le M.H., Coussens L.M., Rugo H.S. Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther. Adv. Med. Oncol. 2019; 11: 1758835919854238. DOI:

37.Smith C.C., Levis M.J., Frankfurt O., Pagel J.M., Roboz G.J., Stone R.M., Wang E.S., Severson P.L., West B.L., Le M.H., Kayser S., Lam B., Hsu H.H., Zhang C., Bollag G., Perl A.E. A phase 1/2 study of the oral FLT3 inhibitor pexidartinib in relapsed/refractory FLT3-ITD-mutant acute myeloid leukemia. Blood Adv. 2020; 4 (8): 1711–21. DOI:

38.Lamb Y.N. Pexidartinib: first approval. Drugs. 2019; 79 (16): 1805–12. DOI:

39.Cassier P.A., Italiano A., Gomez-Roca C.A., Le Tourneau C., Toulmonde M., Cannarile M.A., Ries C., Brillouet A., Müller C., Jegg A.M., Bröske A.M., Dembowski M., Bray-French K., Freilinger C., Meneses-Lorente G., Baehner M., Harding R., Ratnayake J., Abiraj K., Gass N., Noh K., Christen R.D., Ukarma L., Bompas E., Delord J.P., Blay J.Y., Rüttinger D. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 2015; 16 (8): 949–56. DOI:

40.Gomez-Roca C., Cassier P., Zamarin D., Machiels J.P., Luis Perez Gracia J., Stephen Hodi F., Taus A., Martinez Garcia M., Boni V., Eder J.P., Hafez N., Sullivan R., Mcdermott D., Champiat S., Aspeslagh S., Terret C., Jegg A.M., Jacob W., Cannarile M.A., Ries C., Korski K., Michielin F., Christen R., Babitzki G., Watson C., Meneses-Lorente G., Weisser M., Rüttinger D., Delord J.P., Marabelle A. Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naïve or experienced for immune checkpoint blockade. J. Immunother. Cancer. 2022; 10 (5): e004076. DOI:

41.Falchook G.S., Peeters M., Rottey S., Dirix L.Y., Obermannova R., Cohen J.E., Perets R., Frommer R.S., Bauer T.M., Wang J.S., Carvajal R.D., Sabari J., Chapman S., Zhang W., Calderon B., Peterson D.A. A phase 1a/1b trial of CSF-1R inhibitor LY3022855 in combination with durvalumab or tremelimumab in patients with advanced solid tumors. Invest. New Drugs. 2021; 39 (5): 1284–97. DOI:

42.Jaiswal S., Jamieson C.H., Pang W.W., Park C.Y., Chao M.P., Majeti R., Traver D., van Rooijen N., Weissman I.L. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009; 138 (2): 271–85. DOI:

43.Eladl E., Tremblay-LeMay R., Rastgoo N., Musani R., Chen W., Liu A., Chang H. Role of CD47 in hematological malignancies. J. Hematol. Oncol. 2020; 13 (1): 96. DOI:

44.Dheilly E., Majocchi S., Moine V., Didelot G., Broyer L., Calloud S., Malinge P., Chatel L., Ferlin W.G., Kosco-Vilbois M.H., Fischer N., Masternak K. Tumor-directed blockade of CD47 with bispecific antibodies induces adaptive antitumor immunity. Antibodies (Basel). 2018; 7 (1): 3. DOI:

45.Yanagita T., Murata Y., Tanaka D., Motegi S.I., Arai E., Daniwijaya E.W., Hazama D., Washio K., Saito Y., Kotani T., Ohnishi H., Oldenborg P.A., Garcia N.V., Miyasaka M., Ishikawa O., Kanai Y., Komori T., Matozaki T. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017; 2 (1): e89140. DOI:

46.Sikic B.I., Lakhani N., Patnaik A., Shah S.A., Chandana S.R., Rasco D., Colevas A.D., O’Rourke T., Narayanan S., Papadopoulos K., Fisher G.A., Villalobos V., Prohaska S.S., Howard M., Beeram M., Chao M.P., Agoram B., Chen J.Y., Huang J., Axt M., Liu J., Volkmer J.P., Majeti R., Weissman I.L., Takimoto C.H., Supan D., Wakelee H.A., Aoki R., Pegram M.D., Padda S.K. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 2019; 37 (12): 946–53. DOI:

47.Jalil A.R., Andrechak J.C., Discher D.E. Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPα structure-function. Antib. Ther. 2020; 3 (2): 80–94. DOI:

48.Weiskopf K., Ring A.M., Ho C.C., Volkmer J.P., Levin A.M., Volkmer A.K., Ozkan E., Fernhoff N.B., van de Rijn M., Weissman I.L., Garcia K.C. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science. 2013; 341 (6141): 88–91. DOI:

49.Müller E., Christopoulos P.F., Halder S., Lunde A., Beraki K., Speth M., Oynebraten I., Corthay A. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front. Immunol. 2017; 8: 1383. DOI:

50.Pan Y., Yu Y., Wang X., Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020; 11: 583084. DOI:

51.Liu S.X., Gustafson H.H., Jackson D.L., Pun S.H., Trapnell C. Trajectory analysis quantifies transcriptional plasticity during macrophage polarization. Sci. Rep. 2020; 10 (1): 12273. DOI:

52.Hörhold F., Eisel D., Oswald M., Kolte A., Röll D., Osen W., Eichmüller S.B., König R. Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput. Biol. 2020; 16 (2): e1007657. DOI:

53.Ravichandran S., Bhatt B., Balaji K.N., Chandra N. Combinatorial transcriptional codes specify macrophage polarization destinations. BioRxiv. 2021.10.19.464946; DOI:

54.Tan Y., Wang M., Zhang Y., Ge S., Zhong F., Xia G., Sun C. Tumor-associated macrophages: a potential target for cancer therapy. Front. Oncol. 2021; 11: 693517. DOI:

55.Zhou J., Tang Z., Gao S., Li C., Feng Y., Zhou X. Tumor-associated macrophages: recent insights and therapies. Front. Oncol. 2020; 10: 188. DOI:

56.Bagaev A.V., Rybinets A.S., Fedorova A.A., Ushakova E.I., Lebedeva E.S., Pichugin A.V., Ataullakhanov R.I. Synergism of TLR3 and TLR4 agonists during reprogramming of macrophages to antitumor state. Immunologiya. 2021; 42 (6): 615–30. DOI: (in Russian)

57.Lebedeva E.S., Bagaev A.V., Garaeva A.Y., Chulkina M.M., Pichugin A.V., Ataullakhanov R.I. The cooperative interaction of TLR4-, TLR9- and NOD2-signaling pathways in mouse macrophages. Immunologiya. 2018; 39 (1): 4–11. DOI: (in Russian)

58.Pichugin A.V., Bagaev A.V., Lebedeva E.S., Chulkina M.M., Ataullakhanov R.I. Combined activation with agonists of TLR4, TLR9 AND NOD2 receptors synergistically increases production of cytokine-proteins in mouse macrophages. Immunologiya. 2018; 39 (4): 172–7. DOI: (in Russian)

59.Chulkina M.M., Bagaev A.V., Lebedeva E.S., Garaeva A.Ya., Pichugin A.V., Ataullakhanov R.I. Synergistic activation of inos, ifn-β, il12p40, il6, tnf-α genes transcription in macrophages under simultaneous influence with agonists of TLR4, TLR9 and NOD2 receptors. Immunologiya. 2018; 39 (4): 178–85. DOI: (in Russian)

60.Lebedeva E.S., Dzharullaeva A.Sh., Bagaev A.V., Erokhova A.S., Chulkina M.M., Tukhvatulin A.I., Pichugin A.V., Logunov D.Yu., Ataullakhanov R.I. Combined stimulation of receptors of TLR4, TLR9 and NOD2 synergistically increases protection of laboratory mice in lethal Salmonella enterica infection model. Immunologiya. 2018; 39 (5–6): 252–7. DOI: (in Russian)

61.Bagaev A.V., Garaeva A.Y., Lebedeva E.S., Pichugin A.V., Ataullakhanov R.I., Ataullakhanov F.I. Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci. Rep. 2019; 9 (1): 4563. DOI:

62.Bagaev A., Pichugin A., Nelson E.L., Agadjanyan M.G., Ghochikyan A., Ataullakhanov R.I. Anticancer mechanisms in two murine bone marrow-derived dendritic cell subsets activated with TLR4 agonists. J. Immunol. 2018; 200 (8): 2656–69. DOI:

63.Lebedeva E., Bagaev A., Pichugin A., Chulkina M., Lysenko A., Tutykhina I., Shmarov M., Logunov D., Naroditsky B., Ataullakhanov R. The differences in immunoadjuvant mechanisms of TLR3 and TLR4 agonists on the level of antigen-presenting cells during immunization with recombinant adenovirus vector. BMC Immunol. 2018; 19 (1): 26. DOI:

64.Ghochikyan A., Pichugin A., Bagaev A., Davtyan A., Hovakimyan A., Tukhvatulin A., Davtyan H., Shcheblyakov D., Logunov D., Chulkina M., Savilova A., Trofimov D., Nelson E.L., Agadjanyan M.G., Ataullakhanov R.I. Targeting TLR-4 with a novel pharmaceutical grade plant derived agonist, Immunomax®, as a therapeutic strategy for metastatic breast cancer. J. Transl. Med. 2014; 12: 322. DOI:

65.Ushakova E.I., Lebedeva E.S., Bagaev A.V., Pichugin A.V., Ataullakhanov R.I. Combined immunotherapy of metastatic carcinoma by resection of the primary tumor and subsequent reprogramming of macrophages and dendritic cells using a TLR4 agonist in laboratory mice. Immunologiya. 2021; 42 (5): 490–501. DOI: (in Russian)

66.Ushakova E., Lebedeva E., Pichugin A., Ataullakhanov R. P08.04 Successful immunotherapy of the breast cancer metastatic disease in mice using a pharmaceutical TLR4-agonist induces systemic anti-tumor T cell response and long-term T cell memory. In: Journal for Immunotherapy of Cancer. 2021; 9. DOI:

67.Ushakova E., Savchenko M., Lebedeva E., Pichugin A., Ataullakhanov R. In situ anti-tumor immunization using the tumor microenvironment reprograming with a TLR4-agonist induces strong CD4 and CD8 T cells responses, long-living T cell memory, and protection against 4T1 metastatic breast cancer in mice. Conference: 6th European Congress of Immunology. Abstracts. Location Virtual. Date September 1–4, 2021. Eur. J. Immunol. 2021; 51 (S1): 391. Meeting Abstract number P-0822. DOI:

68.Kashfi K., Kannikal J., Nath N. Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells. 2021; 10 (11): 3194. DOI:

69.Cai H., Zhang Y., Wang J., Gu J. Defects in Macrophage Reprogramming in Cancer Therapy: The Negative Impact of PD-L1/PD-1. Front. Immunol. 2021; 12: 690869. DOI:

70.Pan Y., Yu Y., Wang X., Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020; 11: 583084. DOI:

71.Sarode P., Zheng X., Giotopoulou G.A., Weigert A., Kuenne C., Günther S., Friedrich A., Gattenlöhner S., Stiewe T., Brüne B., Grimminger F., Stathopoulos G.T., Pullamsetti S.S., Seeger W., Savai R. Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: a potential treatment of lung cancer. Sci. Adv. 2020; 6 (23): eaaz6105. DOI:

72.Zhang F., Parayath N.N., Ene C.I., Stephan S.B., Koehne A.L., Coon M.E., Holland E.C., Stephan M.T. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 2019; 10 (1): 3974. DOI:

73.Sun L., Kees T., Almeida A.S., Liu B., He X.Y., Ng D., Han X., Spector D.L., McNeish I.A., Gimotty P., Adams S., Egeblad M. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell. 2021; 39 (10): 1361–1374.e9. DOI:

Musa R. Khaitov

Corresponding member of Russian Academy of Sciences, MD, Professor, Director of the NRC Institute of Immunology FMBA of Russia

Medicine today

Уважаемые коллеги, до XI-го Национального конгресса с международным участием имени Н.О. Миланова "Пластическая хирургия, эстетическая медицина и косметология" осталось 3 дня! С 29 ноября по 1 декабря 2022 года в Москве пройдет XI Национальный конгресс "Пластическая хирургия,...

6-7 декабря 2022 года состоится юбилейная X конференция с международным участием "Креативная кардиология и кардиохирургия. Новые технологии диагностики и лечения заболеваний сердца", которая будет проходить в очном и онлайн-формате в ФГБУ "НМИЦ ССХ им. А.Н. Бакулева"...

Приглашаем 1 и 2 декабря в Москву на яркий профессиональный праздник - итоговую всероссийскую Школу РОАГ! Школа в Москве занимает особое место в образовательном цикле Школ РОАГ. На ней подводятся итоги прошедшего сезона, обсуждаются темы, которые вызывают наибольший интерес...