Study of MAGE-A4 specific TCR-like CAR-T lymphocytes in vitro

Abstract

Introduction. Currently, one of the promising options for CAR-T technology is the development of TCR-like CAR-T lymphocytes that recognize epitopes of tumor-associated antigens in combination with MHC, which opens up a wide range of possible target antigens of any cellular localization. This work presents characterization in vitro of TCR-like CAR-T cells specific for MAGE-A4, a cancer-germline antigen, which expression is observed only in malignant neoplasms and immune-privileged organs, which makes it a promising target for effective CAR-T cellular therapy with reduced off-target toxicity.

Material and methods. Transduced and non-transduced lymphocytes were studied for the memory subsets (by markers CD45RA and CD62L) and cell activation and exhaustion mar- kers (CD69, CD95, PD-1, TIM3) by flow cytometry. The cytotoxicity of the obtained CAR-T cells was studied colorimetrically by the content of lactate dehydrogenase. The effector function of CAR-T cells was studied after cocultivation with target cells by cell activation markers (4-1BB, CD69, CD40L, FasL) detection using flow cytometry.

Results. Transduced CD4+ and CD8+ lymphocytes were characterized by an increased content of terminal effector cells, as well as activated (according to CD69 marker) and exhausted cells (PD-1+TIM3+ phenotype). However, predominantly, transduced cells were represented by low differentiated memory T cell subsets, and did not carry markers of activation and exhaustion. Transduced cultures exhibited antigen-specific cytotoxicity greater than those of non-transduced cells. At the same time, the cytotoxicity of transduced cells was accompanied by an increase in the number of cells carrying activation immunostimulating molecules 4-1BB, CD69, CD40L.

Conclusion. The MAGE-A4-specific TCR-like CAR-T cells exhibit antitumor response in vitro and can be recommended for further preclinical study in experimental models in vitro and in vivo.

Keywords:CAR; TCR-like CAR-T cells; MAGE-A4; GITR; memory T cell subsets; T cell activation; T cell exhaustion

For citation: Tereshchenko V.P., Kuznetsova M.S., Shevchenko J.A., Fisher M.S., Kurilin V.V., Alsalloum A., Akahori Y., Shiku H., Sennikov S.V. Study of MAGE-A4 specific TCR-like CAR-T lymphocytes in vitro. Immunologiya. 2022; 43 (4): 401–11. DOI: https://doi.org/10.33029/0206-4952-2022-43-4-401-411 (in Russian)

Funding. The research was supported by the grant of the Russian Science Foundation (project No. 21-65-00004). URL: https://rscf.ru/project/21-65-00004/

Conflict of interests. Authors declare no conflict of interests.

Authors’ contributions. The concept and design of the study – Tereshchenko V.P., Kuznetsova M.S., Shevchenko J.A., Kurilin V.V., Akahori Y., Shiku H., Sennikov S.V.; data collection and processing – Tereshchenko V.P., Kuznetsova M.S., Shevchenko J.A., Fisher M.S., Alsallum A.; statistical data processing – Tereshchenko V.P.; text writing – Tereshchenko V.P.; editing – Tereshchenko V.P., Kuznetsova M.S., Sennikov S.V.; approval of the final version of the article – Sennikov S.V.; responsibility for the integrity of all parts of the article – Tereshchenko V.P.

References

1. Lee D.W., Kochenderfer J.N., Stetler-Stevenson M., Cui Y.K., Delbrook C., Feldman S.A., et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015; 385: 517–28. DOI: https://doi.org/10.1016/S0140-6736(14)61403-3

2. Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J., et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014; 371: 1507–17. DOI: https://doi.org/10.1056/NEJMoa1407222

3. Kiselevsky M.V., Chikileva I.O., Sitdikova S.M., Vlasenko R.Ya., Karaulov A.V. Prospectives of application of the genetically modified lymphocytes with chimeric T-cell receptor (CAR-T-cells) for the therapy of solid tumors. Immunologiya. 2019; 40 (4): 48–55. DOI: https://doi.org/10.24411/0206-4952-2019-140064 (in Russian)

4. Stepanov A.V., Markov O.V., Chernikov I.V., Gladkikh D.V., Zhang H., Jones T., et al. Autocrine-based selection of ligands for persona- lized CAR-T therapy of lymphoma. Sci. Adv. 2018; 4 (11): aau4580. DOI: https://doi.org/10.1126/sciadv.aau4580

5. Sanderson J.P., Crowley D.J., Wiedermann G.E., Quinn L.L., Crossland K.L., Tunbridge H.M., et al. Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy. Oncoimmunology. 2020; 9 (1): 1682381. DOI: https://doi.org/10.1080/2162402X.2019.1682381

6. Hiasa A., Hirayama M., Nishikawa H., Kitano S., Nukaya I., Yu S.S., et al. Long-term phenotypic, functional and genetic stability of cancer-specific T-cell receptor (TCR) αβ genes transduced to CD8+ T cells. Gene Ther. 2008; 15: 695–9. DOI: https://doi.org/10.1038/sj.gt.3303099

7. Bausch-Fluck D., Goldmann U., Müller S., van Oostrum M., Müller M., Schubert O.T., et al. The in silico human surfaceome. Proc. Natl Acad. Sci. USA. 2018; 115 (46): E10 988–97. DOI: https://doi.org/10.1073/pnas.1808790115

8. Fagerberg L., Jonasson K., von Heijne G., Uhlén M., Berglund L. Prediction of the human membrane proteome. Proteomics. 2010; 10: 1141–9. DOI: https://doi.org/10.1002/pmic.200900258

9. Kulemzin S.V., Gorchakov A.A., Taranin A.V. Prostate cancer surface targets for CAR T cell therapy or metastatic prostate cancer in the CAR T cell era: My kingdom for the target! Cell. Ther. Transplant. 2019; 8: 19–28. DOI: https://doi.org/10.18620/ctt-1866-8836-2019-8-4-19-28

10. Zhang H., Li F., Cao J., Wang X., Cheng H., Qi K., et al. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci. Transl. Med. 2021; 13 (578): eaba7308. DOI: https://doi.org/10.1126/scitranslmed.aba7308

11. Golubovskaya V.M. GITR domain inside CAR co-stimulates activity of CAR-T cells against cancer. Front. Biosci. 2018; 23: 4703. DOI: https://doi.org/10.2741/4703

12. Tang X., Tang Q., Mao Y., Huang X., Jia L., Zhu J., et al. CD137 Co-stimulation improves the antitumor effect of LMP1-specific chimeric antigen receptor T cells in vitro and in vivo. Oncotargets Ther. 2019; 12: 9341–50. DOI: https://doi.org/10.2147/OTT.S221040

13. Shafer P., Kelly L.M., Hoyos V. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front. Immunol. 2022; 13: 835752. DOI: https://doi.org/10.3389/fimmu.2022.835762

14. Chodon T., Comin-Anduix B., Chmielowski B., Koya R.C., Wu Z., Auerbach M., et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 2014; 20: 2457–65. DOI: https://doi.org/10.1158/1078-0432.CCR-13-3017

15. Akahori Y., Wang L., Yoneyama M., Seo N., Okumura S., Miyahara Y., et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood. 2018; 132: 1134–45. DOI: https://doi.org/10.1182/blood-2017-08-802926

16. Dragon A.C., Zimmermann K., Nerreter T., Sandfort D., Lahrberg J., Klöß S., et al. CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation. J. Immunother. Cancer. 2020; 8: e000736. DOI: https://doi.org/10.1136/jitc-2020-000736

17. Tereshchenko V.P., Sennikov S.V. Tumor xenografts as the model for a preclinical trials of genetically modified cell therapy. Immunologiya. 2021; 42 (6): 730–41. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-730-741 (in Russian)

18. Zajac P., Schultz-Thater E., Tornillo L., Sadowski C., Trella E., Mengus C., et al. MAGE-A antigens and cancer immunotherapy. Front. Med. 2017; 4: 18. DOI: https://doi.org/10.3389/fmed.2017.00018

19. Kageyama S., Ikeda H., Miyahara Y., Imai N., Ishihara M., Saito K., et al. Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin. Cancer Res. 2015; 21: 2268–77. DOI: https://doi.org/10.1158/1078-0432.CCR-14-1559

20. He Y., Vlaming M., van Meerten T., Bremer E. The implementation of TNFRSF co-stimulatory domains in CAR-T cells for optimal functional activity. Cancers (Basel). 2022; 14: 299. DOI: https://doi.org/10.3390/cancers14020299

21. Hauer J., Püschner S., Ramakrishnan P., Simon U., Bongers M., Federle C., et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-κB pathway by TRAF-binding TNFRs. Proc. Natl Acad. Sci. 2005; 102: 2874–9. DOI: https://doi.org/10.1073/pnas.0500187102

22. Brummelman J., Pilipow K., Lugli E. The single-cell phenotypic identity of human CD8+ and CD4+ T cells. Int. Rev. Cell Mol. Biol. 2018; 341: 63–124. DOI: https://doi.org/10.1016/bs.ircmb.2018.05.007

23. Testi R., Phillips J.H., Lanier L.L. T cell activation via Leu-23 (CD69). J. Immunol. 1989; 143: 1123.

24. Long A.H., Haso W.M., Shern J.F., Wanhainen K.M., Murgai M., Ingaramo M., et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 2015; 21: 581–90. DOI: https://doi.org/10.1038/nm.3838

25. Hui E., Cheung J., Zhu J., Su X., Taylor M.J., Wallweber H.A., et al. T cell costimulatory receptor CD28 is a primary target for PD-1- mediated inhibition. Science. 2017; 355: 1428–33. DOI: https://doi.org/10.1126/science.aaf1292

26. Yang R., Sun L., Li C.-F., Wang Y.-H., Yao J., Li H., et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 2021; 12: 832. DOI: https://doi.org/10.1038/s41467-021-21099-2

27. Golubovskaya V., Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 2016; 8: 36. DOI: https://doi.org/10.3390/cancers8030036

28. Loskog A., Totterman T. CD40L – a multipotent molecule for tumor therapy. Endocr. Metab. Immune Disord. Drug Targets. 2007; 7: 23–8. DOI: https://doi.org/10.2174/187153007780059432

29. Karnell J.L., Rieder S.A., Ettinger R., Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv. Drug Deliv. Rev. 2019; 141: 92–103. DOI: https://doi.org/10.1016/j.addr.2018.12.005

30. Mamonkin M., Rouce R.H., Tashiro H., Brenner M.K. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015; 126: 983–92. DOI: https://doi.org/10.1182/blood-2015-02-629527

EDITOR-IN-CHIEF
EDITOR-IN-CHIEF
Musa R. Khaitov

Corresponding member of Russian Academy of Sciences, MD, Professor, Director of the NRC Institute of Immunology FMBA of Russia

Вскрытие
Medicine today

Уважаемые коллеги, до XI-го Национального конгресса с международным участием имени Н.О. Миланова "Пластическая хирургия, эстетическая медицина и косметология" осталось 3 дня! С 29 ноября по 1 декабря 2022 года в Москве пройдет XI Национальный конгресс "Пластическая хирургия,...

6-7 декабря 2022 года состоится юбилейная X конференция с международным участием "Креативная кардиология и кардиохирургия. Новые технологии диагностики и лечения заболеваний сердца", которая будет проходить в очном и онлайн-формате в ФГБУ "НМИЦ ССХ им. А.Н. Бакулева"...

Приглашаем 1 и 2 декабря в Москву на яркий профессиональный праздник - итоговую всероссийскую Школу РОАГ! Школа в Москве занимает особое место в образовательном цикле Школ РОАГ. На ней подводятся итоги прошедшего сезона, обсуждаются темы, которые вызывают наибольший интерес...


JOURNALS of «GEOTAR-Media»