Features of postinfectious immunity formation in a patient with common variable immune deficiency and severe COVID-19 course: a description of a clinical case

Abstract

Background. Common variable immune deficiency (CVID) is a complicating comorbid background of COVID-19. Post-infectious immunity formation to SARS-CoV-2 during a pandemic is of particular relevance for such patients.

Aim of the study – to present the features of the development of postinfectious humoral immune response in a patient with CVID.

Material and methods. Patient K., 49 years old, the diagnosis of CVID verified at the age of 33, has been receiving regular replacement therapy with intravenous immunoglobulins for the last 10 years. After intrafamily contact and infection with SARS-CoV-2 due to the progressive deterioration of the clinical course of COVID-19, he was admitted to a monoinfection hospital.

Results. During the treatment of the severe clinical case of COVID-19 a patient with CVID proved to be effective therapy combining anti-cytokine drugs and additional courses of replacement therapy with intravenous immunoglobulins. 6 weeks later from the development of the clinic, the patient was detected specific antibodies to SARS-CoV-2 antigens – IgM (CP 4.73) and IgG (43 BAU), in 4 months the corresponding parameters were 3.55 (CP IgM) and 487 BAU (CP IgG). Comparative analysis of immunophenotyping of the patient’s B lymphocytes before the disease, during periods of early and late convalescence showed the dynamics of changes in the number of naive B-lymphocytes, unswitched and switched B-memory cells, plasmablasts, B-reg and B-lymphocytes expressing intercellular cooperation molecules.

Conclusion. In the patient with CVID the development of a specific humoral immune response to SARS-CoV-2 after a COVID-19 infection is accompanied by an increase in the proportion of B-memory cells, increased maturation of B-lymphocytes, coordinated dynamics of B-cell suppression and activation parameters.

Keywords:COVID-19; CVID; B-lymphocytes, phenotypic characteristic; postinfectious immunity

For citation: Sizyakina L.P., Andreeva I.I., Skripkina N.A. Features of postinfectious immunity formation in a patient with common variable immune deficiency with severe COVID-19 course: a description of a clinical case. Immunologiya. 2022; 43 (4): 440–6. DOI: https://doi.org/10.33029/0206-4952-2022-43-4-440-446 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contributions. Sizyakina L.P. – development of the research concept, text editing; Skripkina N.A. – collection and processing of material; Andreeva I.I. – writing text.

References

1. Abbott J.K., Gelfand E.W. Common variable immunodeficiency: diagnosis, management, and treatment. Immunol Allergy Clin North Am. 2015; 35: 637–58. DOI: https://www.doi.org/10.1016/j.iac.2015.07.009

2. Abbott J.K., Gelfand E.W. Registries are shaping how we think about primary immunodeficiency diseases. J Allergy Clin Immunol. 2022; 149: 1943–5. DOI: https://doi.org/10.1016/j.jaci.2022.04.019

3. Sizyakina L.P., Andreeva I.I. Danilova D.I. Dysregulatory processes of the cellular link of the immune system in the dynamics of common variable immunodeficiency. Russian Clinical Laboratory Diagnostics. 2021; 66 (3): 160–5 DOI: http://dx.doi.org/10.51620/0869-2084-2021-66-3-160-165 (in Russian)

4. Al-Musa A., La Bere B., Habiballah S., Nguyen A.A., Chou J. Advances in clinical outcomes: What we have learned during the COVID-19 pandemic. J Allergy Clin Immunol. 2022; 149 (2): 569–78. DOI: https://www.doi.org/10.1016/j.jaci.2021.12.775

5. Seidel M.G., Kindle G., Gathmann B., Quinti I., Buckland M., Van Montfrans J., Scheible R., Rusch S., Gasteiger L.M., Grimbacher B., Mahlaoui N., Ehl S., Abinun M., Albert M., Cohen S.B., Bustamante J., Cant A., Casanova J.-L., Chapel H., Dokal I., Donadieu J., Durandy A., Edgar D., Espanol T., Etzioni A., Fischer A., Gaspar B., Gatti R., Gennery A., Grigoriadou S., Holland S., Janka G., Kanariou M., Klein C., Lachmann H., Lilic D., Manson A., Martinez N., Meyts I., Moes N., Moshous D., Neven B., Ochs H., Picard C., Renner E., Rieux-Laucat F., Seger R., Soresina A., Stoppa-Lyonnet D., Thon V., Thrasher A., van de Veerdonk F., Villa A., Weemaes C., Warnatz K., Wolska B., Zhang S.-Y. The European society for immunodeficiencies (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract. 2019; 7: 1763–70. DOI: https://www.doi.org/10.1016/j.jaip.2019.02.004

6. Temporary guidelines «Prevention, diagnosis and treatment of a new coronavirus infection (COVID-19)» of the Ministry of Health of the Russian Federation. Version 13 (14.10.2021) URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf (in Russian)

7. Allergology and clinical immunology. Clinical guidelines. Khai- tov R.M., Ilyina N.I., eds. Moscow: GEOTAR-Media, 2019. 336 p. (in Russian)

8. Shields A.M., Burns S.O., Savic S., Richter A.G. COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. Journal of Allergy and Clinical Immunology. 2021; 147 (3): 870–5. DOI: https://doi.org/10.1016/j.jaci.2020.12.620

9. Meyts I., Bucciol G., Quinti I., Neven B., Fischer A., Seoane E., Lopez-Granados E., Gianelli C., Robles-Marhuenda A., Jeandel P.Y., Paillard C., Sankaran V.G., Demirdag Y.Y., Lougaris V., Aiuti A., Plebani A., Milito C., Dalm V., Guevara-Hoyer K., Sánchez-Ramón S., Bezrodnik L., Barzaghi F., Gonzalez-Granado L.I., Hayman G. R., Uzel G., Mendonça L.O., Agostini C., Spadaro G., Badolato R., Soresina A., Vermeulen F., Bosteels C., Lambrecht B.N., Keller M., Mustillo P.J., Abraham R.S., Gupta S., Ozen A., Karakoc-Aydiner E., Baris S., Freeman A.F., Yamazaki-Nakashimada M., Scheffler-Mendoza S., Espinosa-Padilla S., Gennery R.A., Jolles S., Espinosa Y., Poli M.C., Fieschi C., Hauck F., Cunningham-Rundles C., Mahlaoui N., Warnatz K., Sullivan K.E., Tangye, S.G. Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. J Allergy Clin Immunol. 2020; 147: 520–31. DOI: https://www.doi.org/10.1016/j.jaci.2020.09.010

10. Milito C., Lougaris V., Giardino G., Punziano A., Vultaggio A., Carrabba M., Cinetto F., Scarpa R., Delle Piane R.M., Baselli L., Ricci S., Rivalta B., Conti F., Marasco C., Marzollo A., Firinu D., Pulvirenti F., Lagnese G., Vivarelli E., Cancrini C., Martire B., Danieli M.G., Pession A., Vacca A., Azzari C., Fabio G., Matucci A., Soresina A.R., Agostini C., Spadaro G., Badolato R., Cicalese M.P., Aiuti A., Plebani A., Pignata C., Quinti I. Clinical outcome, incidence, and SARS-CoV-2 infection-fatality rates in Italian patients with inborn errors of immunity. J Allergy Clin Immunol. Pract. 2021; 9: 2904–6. DOI: https://www.doi.org/10.1016/j.jaip.2021.04.017

11. Goudouris E.S., Pinto-Mariz F., Mendonça L.O., Aranda C.S., Guimarães R.R., Kokron C., Barros M.T., Anísio F., Alonso M.L.O., Marcelino F., Valle S.O.R., Junior S.D., Barreto I.D.P., Ferreira J.F.S., Roxo-Junior P., do Rego Silva A.M., Campinhos F.L., Bonfim C., Loth G., Fernandes J.F., Garcia J.L., Capelo A., Takano O.A., Nadaf M.I.V., Toledo E.C., Cunha L.A.O., Di Gesu R.S.W., Schidlowski L., Fillipo P., Bichuetti- Silva D.C., Soldateli G., Ferraroni N.R., de Oliveira Dantas E., Pestana S., Mansour E., Ulaf R.G., Prando C., Condino-Neto A., Grumach A.S. Outcome of SARS-CoV-2 infection in 121 patients with inborn errors of immunity: a cross-sectional study. J Clin Immunol. 2021; 41 (7): 1479–89. DOI: https://www.doi.org/10.1007/s10875-021-01066-8

12. Jones J.M., Faruqi A.J., Sullivan J.K., Calabrese C., Calabrese L.H. COVID-19 outcomes in patients undergoing B cell depletion therapy and those with humoral immunodeficiency states: a scoping review. Pathog Immun. 2021; 6 (1): 76–103. DOI: https://www.doi.org/10.20411/pai.v6i1.435

13. Turriziani O., Bondioni M.P., Filippini M., Soresina A., Spa- daro G., Agostini C., Carsetti R., Plebani A. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020; 146 (1): 211–3. DOI: https://www.doi.org/10.1016/j.jaci.2020.04.013

14. Pulvirenti F., Fernandez Salinas A., Milito C., Terreri S., Mortari E.P., Quintarelli C., Di Cecca S., Lagnese G., Punziano A., Guercio M., Bonanni L., Auria S., Villani F., Albano C., Locatelli F., Spadaro G., Carsetti R., Quinti I. B Cell Response Induced by SARS-CoV-2 infection is boosted by the BNT162b2 vaccine in primary antibody deficiencies. Cells. 2021; 10 (11): 2915. DOI: https://www.doi.org/10.3390/cells10112915

15. Quinti I., Locatelli F., Carsetti R. The immune response to SARS-CoV-2 vaccination: insights learned from adult patients with common variable immune deficiency. Front Immunol. 2022; 12: 815404. DOI: https://www.doi.org/10.3389/fimmu.2021.815404

16. Ballegaard V., Permin H., Katzenstein T.L., Marquart H.V., Schejbel L. Long-term follow-up on affinity maturation and memory B-cell generation in patients with common variable immunodeficiency. J Clin Immunol. 2013; 33 (6): 1067–77. DOI: https://www.doi.org/10.1007/s10875-013-9893-2

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»