Flow cytometric assay for the detection of anti-SARS-CoV-2 Spike protein antibodies in serum of vaccinated volunteers

Abstract

Introduction. The determination of antibodies against the Spike (S) protein of the novel coronavirus is widely used to confirm current or past infection with SARS-CoV-2, and as an indicator of the effectiveness of vaccination against COVID-19. The most common method for detecting anti-S-antibodies is enzyme-linked immunosorbent assay (ELISA), which uses a recombinant S-protein. Immunofluorescence followed by flow cytometry provides an alternative approach to detect anti-S-antibodies, where a protein in the native transmembrane conformation is used as the S-antigen.

The aim of the study was to develop a method for determining anti-S-antibodies using flow cytometry, and to select the most appropriate method for processing experimental data.

Material and methods. The study involved 22 volunteers (7 men and 15 women aged 25 to 70 years, median 48). All volunteers were vaccinated with two doses of the «Sputnik V» vaccine between January and February 2021. Donor sera samples were collected before vaccination with «Sputnik V» and 3 months after vaccination. 5 volunteers had already had a mild form of COVID-19 before the time of vaccination. The remaining 17 volunteers did not encounter the SARS-CoV-2. Antibodies against S-protein were determined by immunofluorescence with registration on a flow cytometer. HEK293 cells were transiently transfected with a plasmid encoding the wild type S-protein which was used as target. Transfection was performed by the calcium phosphate method. Cells were incubated with serially diluted sera and then stained with anti-IgG-PE and anti-IgM-FITC secondary antibodies. The fluorescence level was measured using a flow cytometer. As a measurement result, the mean fluorescence intensity (MFI) obtained at 1:18 serum dilution, or the area under the titration curve (area under curve, AUC) was used. Anti-RBD-antibodies were determined using enzyme immunoassay, and virus-neutralizing activity using pseudotyped or surrogate virus-neutralization analysis (pVNA and sVNA).

Results. Using the developed method, the formation of anti-S antibodies of the IgG and IgM isotypes was shown 3 months after immunization with the «Sputnik V» vaccine. In a simplified version of the method, the relative concentration of antibodies was determined at a single dilution of the test serum by measuring the mean fluorescence intensity (MFI) of the target cells. More reliable results were obtained by construction the titration curve and calculating the area under the curve (AUC). The results thus obtained correlated well with the detection of anti-RBD antibodies by ELISA, as well as with virus neutralization data in pseudotyped and surrogate assays.

Conclusion. Flow cytometry is a convenient method for the simultaneous determination of anti-S antibodies of IgG and IgM isotypes in human serum. The advantages of the method include the fact that the S-protein is presented in a native transmembrane conformation. After minor modification, the established method can be used to determine the level of anti-S-antibodies against mutant variants of SARS-CoV-2.

Keywords:coronavirus infection; SARS-CoV-2; COVID-19; antibodies; flow cytometry

For citation: Astakhova E.A., Byazrova M.G., Milyaev S.M., Sukhova M.M., Mikhailov A.A., Morozov A.A., Prilipov A.G., Filatov A.V. Flow cytometric assay for the detection of anti-SARS-CoV-2 Spike antibodies in serum of vaccinated volunteers. Immunologiya. 2022; 43 (4): 447–57. DOI: https://doi.org/10.33029/0206-4952-2022-43-4-447-457 (in Russian)

Funding. The study was supported by the grant of Russian Science Foundation (RSF) No. 21-15-00286. Byazrova M.G. was supported by the Strategic Academic Leadership Program from RUDN University of Minobrnauki.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Collection and processing of material – Milyaev S.M., Byazrova M.G., Sukhova M.M., Mikhailov A.A., Morozov A.A.; text writing, editing – Astakhova E.A., Filatov A.V.; the final version of the text – Prilipov A.G., Filatov A.V.

References

1. Venter M., Richter K. Towards effective diagnostic assays for COVID-19: a review. J. Clin. Pathol. 2020; 73: 370–7. DOI: https://doi.org/10.1136/jclinpath-2020-206685

2. Goel R.R., Apostolidis S.A., Painter M.M., Mathew D., Pattekar A., Kuthuru O., Gouma S., Hicks P., Meng W., Rosenfeld A.M., Dysinger S., Lundgreen K.A., Kuri-Cervantes L., Adamski S., Hicks A., Korte S., Oldridge D.A., Baxter A.E., Giles J.R., Weirick M.E., McAllister C.M., Dougherty J., Long S., D’Andrea K., Hamilton J.T., Betts M.R., Luning Prak E.T., Bates P., Hensley S.E., Greenplate A.R., Wherry E.J. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci. Immunol. 2021; 6: 1–19. DOI: https://doi.org/10.1126/sciimmunol.abi6950

3. Andreev I.V., Nechay K.O., Andreev A.I., Zubaryova A.P., Esaulova D.R., Alenova A.M., Nikolaeva I.A., Chernyavskaya O.P., Lomonosov K.S., Shulzhenko A.E., Kurbacheva O.M., Latysheva E.A., Shartanova N.V., Nazarova E.V., Romanova L.V., Cherchenko N.G., Smirnov V.V., Averkov O.V., Martynov A.I., Vechorko V.I., Gudima G.O., Kudlay D.A., Khaitov M.R., Khaitov R.M. Post-vaccination and post-infection humoral immune response to the SARS-CoV-2 infection. Immunologiya. 2022; 43 (1): 18–32. DOI: https://doi.org/10.33029/0206-4952-2022-43-1-18-32 (in Russian)

4. Liu B., Su X., Yu G., Yang S., Wang F., Huang T., Zhou L., Hui Z., Liao Y., Qiu Y., Huang J., Gao H., Liu J., Zhong Y. An automated chemiluminescent immunoassay (CLIA) detects SARS-CoV-2 neutralizing antibody levels in COVID-19 patients and vaccinees. Int. J. Infect. Dis. 2022; 115: 116–25. DOI: https://doi.org/10.1016/j.ijid.2021.12.316

5. Assis R., Jain A., Nakajima R., Jasinskas A., Khan S., Palma A., Parker D.M., Chau A., Specimen Collection Group, Obiero J.M., Tifrea D., Leung A., Grabar C., Muqolli F., Khalil G., Escobar J.C., Ventura J., Davies D.H., Albala B., Boden-Albala B., Schubl S., Felgner P.L. Distinct SARS-CoV-2 antibody reactivity patterns elicited by natural infection and mRNA vaccination. NPJ Vaccines 2021; 6 (1): 1–10. DOI: https://doi.org/10.1038/s41541-021-00396-3

6. Emmerich P., von Possel R., Hemmer C.J., Fritzsche C., Geerdes-Fenge H., Menge B., Messing C., Borchardt-Lohölter V., Deschermeier C., Steinhagen K. Longitudinal detection of SARS-CoV-2-specific antibody responses with different serological methods. J. Med. Virol. 2021; 93: 5816–24. DOI: https://doi.org/10.1002/jmv.27113

7. Grzelak L., Temmam S., Planchais C., Demeret C., Tondeur L., Huon C., Guivel-Benhassine F., Staropoli I., Chazal M., Dufloo J., Planas D., Buchrieser J., Rajah M.M., Robinot R., Porrot F., Albert M., Chen K.Y., Crescenzo-Chaigne B., Donati F., Anna F., Souque P., Gransagne M., Bellalou J., Nowakowski M., Backovic M., Bouadma L., Le Fevre L., Le Hingrat Q., Descamps D., Pourbaix A., Laouénan C., Ghosn J., Yazdanpanah Y., Besombes C., Jolly N., Pellerin-Fernandes S., Cheny O., Ungeheuer M.N., Mellon G., Morel P., Rolland S., Rey F.A., Behillil S., Enouf V., Lemaitre A., Créach M.A., Petres S., Escriou N., Charneau P., Fontanet A., Hoen B., Bruel T., Eloit M., Mouquet H., Schwartz O., van der Werf S. A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations. Sci. Transl. Med. 2020; 12: 3103. DOI: https://doi.org/10.1126/scitranslmed.abc3103

8. Horndler L., Delgado P., Abia D., Balabanov I., Mart Inez-Fleta P., Cornish G., Llamas M.A., Serrano-Villar S., Anchez-Madrid F.S., Fresno M., van Santen H.M., Alarcón B. Flow cytometry multiplexed method for the detection of neutralizing human antibodies to the native SARS-CoV-2 spike protein. EMBO Mol. Med. 2021; 13: e13549. DOI: https://doi.org/10.15252/emmm.202013549

9. Lapuente D., Maier C., Irrgang P., Hübner J., Peter A.S., Hoffmann M., Ensser A., Ziegler K., Winkler T.H., Birkholz T., Kremer A.E., Steininger P., Korn K., Neipel F., Überla K., Tenbusch M. Rapid response flow cytometric assay for the detection of antibody responses to SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 40: 751–9. DOI: https://doi.org/10.1007/s10096-020-04072-7

10. Byazrova M.G., Kulemzin S.V., Astakhova E.A., Belovezhets T.N., Efimov G.A., Chikaev A.N., Kolotygin I.O., Gorchakov A.A., Taranin A.V., Filatov A.V. Memory B cells induced by Sputnik V vaccination produce SARS-CoV-2 neutralizing antibodies upon ex vivo restimulation. Front. Immunol. 2022; 13: 840707. DOI: https://doi.org/10.3389/fimmu.2022.840707

11. Wheatley A.K., Juno J.A., Wang J.J., Selva K.J., Reynaldi A., Tan H-X., Lee W.S., Wragg K.M., Kelly H.G., Esterbauer R., Davis S.K., Kent H.E., Mordant F.L., Schlub T.E., Gordon D.L., Khoury D.S., Subbarao K., Cromer D., Gordon T.P., Chung A.W., Davenport M.P., Kent S.J. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat. Commun. 2021; 12: 1162. DOI: https://doi.org/10.1038/s41467-021-21444-5

12. Garcia-Beltran W.F., Lam E.C., Astudillo M.G., Yang D., Miller T.E., Feldman J., Hauser B.M., Caradonna T.M., Clayton K.L., Nitido A.D., Murali M.R., Alter G., Charles R.C., Dighe A., Branda J.A., Lennerz J.K., Lingwood D., Schmidt A.G., Iafrate A.J., Balazs A.B. Pattinson D., Jester P., Guan L., Yamayoshi S., Chiba S., Presler R., Rao H., Iwatsuki-Horimoto K., Ikeda N., Hagihara M., Uchida T., Mitamura K., Halfmann P., Neumann G., Kawaoka Y. COVID-19-neutralizing antibodies predict disease severity and survival. Cell. 2021; 184: 476–88.e11. DOI: https://doi.org/10.1016/j.cell.2020.12.015

13. Gudima G.O., Khaitov R.M., Kudlay D.A., Khaitov M.R. Molecular immunological aspects of diagnostics, prevention and treatment of coronavirus infection. Immunologiya. 2021; 42 (3): 198–210. DOI: https://doi.org/10.33029/0206-4952-2021-42-3-198-210 (in Russian)

14. Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020; 41 (1): 5–18. DOI: https://doi.org/10.33029/0206-4952-2020-41-1-5-18 (in Russian)

15. Ferreira-Gomes M., Kruglov A., Durek P., Heinrich F., Tizian C., Heinz G.A., Pascual-Reguant A., Du W., Mothes R., Fan C., Frischbutter S., Habenicht K., Budzinski L., Ninnemann J., Jani P.K., Guerra G.M., Lehmann K., Matz M., Ostendorf L., Heiberger L., Chang H.D., Bauherr S., Maurer M., Schönrich G., Raftery M., Kallinich T., Mall M.A., Angermair S., Treskatsch S., Dörner T., Corman V.M., Diefenbach A., Volk H.D., Elezkurtaj S., Winkler T.H., Dong J., Hauser A.E., Radbruch H., Witkowski M., Melchers F., Radbruch A., Mashreghi M.F. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat. Commun. 2021; 12: 1–14. DOI: https://doi.org/10.1038/s41467-021-22210-3

16. Karpinski K.F., Hayward S., Tryphonas H. Statistical considerations in the quantitation of serum immunoglobulin levels using the Enzyme-Linked Immunosorbent Assay (ELISA). J. Immunol. Methods. 1987; 103: 189–94. DOI: https://doi.org/10.1016/0022-1759(87)90289-4

17. Frey A., Di Canzio J., Zurakowski D. A statistically defined endpoint titer determination method for immunoassays. J. Immunol. Methods. 1998; 221: 35–41. DOI: https://doi.org/10.1016/S0022-1759(98)00170-7

18.Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D.V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Egorova D.A., Shmarov M.M., Nikitenko N.A., Gushchin V.A., Smolyarchuk E.A., Zyryanov S.K., Borisevich S.V., Naroditsky B.S., Gintsburg A.L. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397: 671–81. DOI: https://doi.org/10.1016/S0140-6736(21)00234-8

19. Zakurskaya V.Ya., Sizyakina L.P., Kharitonova M.V., Shlyk S.V. Dynamics of specifi c humoral response in COVID-19 patients. Immunologiya. 2022; 43 (1): 71–7. DOI: https://doi.org/10.33029/0206-4952-2022-43-1-71-77 (in Russian)

20. Pattinson D., Jester P., Guan L., Yamayoshi S., Chiba S., Presler R., Rao H., Iwatsuki-Horimoto K., Ikeda N., Hagihara M., Uchida T., Mitamura K., Halfmann P., Neumann G., Kawaoka Y. A novel method to reduce ELISA serial dilution assay workload applied to SARS-CoV-2 and seasonal HCoVs. Viruses. 2022; 14: 562. DOI: https://doi.org/10.3390/v14030562

21. Hartman H., Wang Y., Schroeder H.W., Cui X. Absorbance summation: A novel approach for analyzing high-throughput ELISA data in the absence of a standard. PLoS One. 2018; 13: e0198528. DOI: https://doi.org/10.1371/journal.pone.0198528

EDITOR-IN-CHIEF
EDITOR-IN-CHIEF
Musa R. Khaitov

Corresponding member of Russian Academy of Sciences, MD, Professor, Director of the NRC Institute of Immunology FMBA of Russia

Вскрытие
Medicine today

Новые знания от ведущих экспертов на Зимней школе РОРР "Визуализация в педиатрии и неонатологии"! Современная педиатрическая практика неотделима от научного и технического прогресса, достижения которого зачастую меняют подходы к диагностике и определению лечебной тактики. В...

Уважаемые коллеги, до XI-го Национального конгресса с международным участием имени Н.О. Миланова "Пластическая хирургия, эстетическая медицина и косметология" осталось 3 дня! С 29 ноября по 1 декабря 2022 года в Москве пройдет XI Национальный конгресс "Пластическая хирургия,...

6-7 декабря 2022 года состоится юбилейная X конференция с международным участием "Креативная кардиология и кардиохирургия. Новые технологии диагностики и лечения заболеваний сердца", которая будет проходить в очном и онлайн-формате в ФГБУ "НМИЦ ССХ им. А.Н. Бакулева"...


JOURNALS of «GEOTAR-Media»