«Storm» of soluble differentiation molecules in COVID-19

Abstract

The review presents data on changes in the content, on the prognostic and monitoring significance of soluble differentiation molecules of immune system cells in COVID-19. Among them are soluble differentiation molecules mediating innate immune responses, soluble differentiation molecules that are activation markers of lymphocytes, soluble markers of endothelial dysfunction, soluble forms of adhesion molecules, soluble differentiation molecules related to immune response checkpoints. At development of COVID-19 in blood of patients the level of the soluble molecules CD14, CD25, CD163, TREM-1, CD177, ST-2, RAGE, ICAM-1, P- and E-seleсtin, 14 soluble control points of the immune response including HLA-G dramatically increases. The level of soluble CD26 molecules, on the contrary, decreases. Changing the level of soluble differentiation molecules has monitoring and prognostic significance. The ideas about the «storm» of soluble differentiation molecules in the severe course of COVID-19 were formulated, complementing the ideas about the «cytokine storm».

Keywords:soluble differentiation molecules; immune system; COVID-19; «cytokine storm»

For citation. Novikov V.V., Karaulov A.V. A «storm» of soluble differentiation molecules in COVID-19. Immunologiya. 2022; 43 (4): 458–67. DOI: https://doi.org/10.33029/0206-4952-2022-43-4-458-467 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. Authors declare no conflict of interests.

Authors` contribution. Analysis of literature data, writing the article – Novikov V.V.; editing and approval of the final text of the article – Karaulov A.V.

References

1. Pervakova M.Yu. , Potapenko V.G. , Tkachenko O.Yu., Volchkova E.V., et al. Cytokine patterns of fatal hyperinflammatory conditions, caused by secondary hemophagocytic lymphohistiocytosis, bacterial sepsis and COVID-19. Immunologiya. 2022; 43 (2): 174–87. DOI: https://doi.org/10.33029/0206-4952-2022-43-2-174-187

2. Gómez-Rial J., Currás-Tuala M.J., Rivero-Calle I., Gómez-Carballa A., et al. Increased serum levels of sCD14 and sCD163 indicate a preponderant role for monocytes in COVID-19 immunopathology. Front. Immunol. 2020; 11: 560381. DOI: https://doi.org/10.3389/fimmu.2020.560381.

3. Zingaropoli M.A., Nijhawan P., Carraro A., Pasculli P., et al. Increased sCD163 and sCD14 plasmatic levels and depletion of peripheral blood pro-inflammatory monocytes, myeloid and plasmacytoid dendritic cells in patients with severe COVID-19 pneumonia. Front. Immunol. 2021; 12: 627548. DOI: https://doi.org/10.3389/fimmu.2021.627548

4. Aliu-Bejta A., Atelj A., Kurshumliu M., Dreshaj S., et al. Presepsin values as markers of severity of sepsis. Int. J. Infect. Dis. 2020; 95: 1–7. DOI: https://doi.org/10.1016/j.ijid.2020.03.057

5. Fukada A., Kitagawa Y., Matsuoka M., Sakai J., et al. Presepsin as a predictive biomarker of severity in COVID-19: a case series. J. Med. Virol. 2020; 93 (1): 99–101. DOI: https://doi.org/10.1002/jmv.26164

6. Dantas S., Matos A.O., da Silva F.E., Silva-Sales M., et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int. Rev. Immunol. 2020; 39 (4): 188–202. DOI: https://doi.org/10.1080/08830185.2020.1762597

7. Van Singer M., Brahier T., Ngai M., Wright J., et al. COVID-19 risk stratification algorithms based on sTREM-1 and IL-6 in emergency department. J. Allergy Clin. Immunol. 2021; 147 (1): 99–106.e4. DOI: https://doi.org/10.1016/j.jaci.2020.10.001

8. De Nooijer A.H., Grondman I., Lambden S., Kooistra E.J., et al. Increased sTREM-1 plasma concentrations are associated with poor clinical outcomes in patients with COVID-19. Biosci. Rep. 2021; 41 (7): BSR20210940. DOI: https://doi.org/10.1042/BSR20210940

9. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 2020; 20 (6): 355–62. DOI: https://doi.org/10.1038/s41577-020-0331-4

10. Lévy Y., Wiedemann A., Hejblum B.P., et al. CD177, a specific marker of neutrophil activation, is associated with coronavirus disease 2019 severity and death. iScience. 2021; 24 (7): 102711. DOI: https://doi.org/10.1016/j.isci.2021.102711

11. Oczypok E.A., Perkins T.N., Oury T.D. All the «RAGE» in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr. Respir. Rev. 2017; 23: 40–9. DOI: https://doi.org/10.1016/j.prrv.2017.03.012

12. Nakamura T., Sato E., Fujiwara N., Kawagoe Y., et al. Increased levels of soluble receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) are associated with death in patients with acute respiratory distress syndrome. Clin. Biochem. 2011; 44 (8–9): 601–4. DOI: https://doi.org/10.1016/j.clinbiochem.2010.12.014

13. Kehribar D.Y., Cihangiroglu M., Sehmen E., Avci B., et al. The receptor for advanced glycation end product (RAGE) pathway in COVID-19. Biomarkers. 2021; 26 (2): 114–8. DOI: https://doi.org/10.1080/1354750X.2020.1861099

14. Ragusa R., Basta G., Del Turco S., Caselli C. A possible role for ST2 as prognostic biomarker for COVID-19. Vasc. Pharmacol. 2021; 138: 106857. DOI: https://doi.org/10.1016/j.vph.2021.106857

15. Zeng Z., Hong X.-Y., Li Y., Chen W., et al. Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark. Med. 2020; 14 (17): 1619–29. DOI: https://doi.org/10.2217/bmm-2020-0410

16. Xie M., Yunis J., Yao Y., Shi J., et al. High levels of soluble CD25 in COVID-19 severity suggest a divergence between anti-viral and pro-inflammatory T-cell responses. Clin. Transl. Immunol. 2021; 10 (2): e1251. DOI: https://doi.org/10.1002/cti2.1251

17. Buszko M., Park J.H., Verthelyi D., Sen R., et al. The dynamic changes in cytokine responses in COVID-19: a snapshot of the current state of knowledge. Nat. Immunol. 2020; 21 (10): 1146–51. DOI: https://doi.org/10.1038/s41590-020-0779-1

18. Sizyakina L.P., Skripkina N.A., Antonova E.A., Zakurskaya V.Ya., et al. Dynamics of immune status parameters in patients with COVID-19, receiving therapy with inclusion of an IL-6 receptor antagonist. Immunologiya. 2022; 43 (2): 188–96. DOI: https://doi.org/10.33029/0206-4952-2022-43-2-188-196 (in Russian)

19. Zhang Y., Wang X., Li X., Xi D. Potential contribution of increased soluble IL-2R to lymphopenia in COVID-19 patients. Cell. Mol. Immunol. 2020; 17 (8): 878–80. DOI: https://doi.org/10.1038/s41423-020-0484-x

20. Quartuccio L., Fabris M., Sonaglia A., Peghin M., et al. Interleukin 6, soluble interleukin 2 receptor alpha (CD25), monocyte colony-stimulating factor, and hepatocyte growth factor linked with systemic hyperinflammation, innate immunity hyperactivation, and organ damage in COVID-19 pneumonia. Cytokine. 2021; 140: 155438. DOI: https://doi.org/10.1016/j.cyto.2021.155438

21. Hou H., Zhang B., Huang H., Luo Y., et al. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin. Exp. Immunol. 2020; 201 (1): 76–84. DOI: https://doi.org/10.1111/cei.13450

22. García-Gasalla M., Ferrer J.M., Fraile-Ribot P.A., Ferre-Beltrán A., et al. Predictive immunological, virological, and routine laboratory markers for critical COVID-19 on admission. Can. J. Infect. Dis. Med. Microbiol. 2021; 2021: 9965850. DOI: https://doi.org/10.1155/2021/9965850

23. Kaya H., Kaji M., Usuda D. Soluble interleukin-2 receptor levels on admission associated with mortality in coronavirus disease 2019. Int. J. Infect. Dis. 2021; 105: 522–4. DOI: https://doi.org/10.1016/j.ijid.2021.03.011

24. Lorkiewicz P., Waszkiewicz N. Biomarkers of post-COVID depression. J. Clin. Med. 2021; 10 (18): 4142. DOI: https://doi.org/10.3390/jcm10184142

25. Vankadari N., Wilce J.A. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020; 9 (1): 601–4. DOI: https://doi.org/10.1080/22221751.2020.1739565

26. Radzikowska U., Ding M., Tan G., Zhakparov D., et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020; 75: 2829–45. DOI: https://doi.org/10.1111/all.14429

27. Raj V.S., Mou H., Smits S.L., Dekkers D.H.W. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495: 251–4. DOI: https://doi.org/10.1038/nature12005

28. Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020, 41 (1): 5–18. DOI: https://doi.org/10.33029/0206-4952-2020-41-1-5-18 (in Russian)

29. Raha A.A., Chakraborty S., Henderson J., Mukaetova-Ladinska E., et al. Investigation of CD26, a potential SARS-CoV-2 receptor, as a biomarker of age and pathology. Biosci. Rep. 2020; 40 (12): BSR20203092. DOI: https://doi.org/10.1042/BSR20203092

30. Casrouge A., Sauer A.V., Barreira da Silva R., et al. Lymphocytes are a major source of circulating soluble dipeptidyl peptidase 4. Clin. Exp. Immunol. 2018; 194 (2): 166–79. DOI: https://doi.org/10.1111/cei.13163

31. Ragab D., Laird M., Duffy D. CXCL10 antagonism and plasma sDPPIV correlate with increasing liver disease in chronic HCV genotype 4 infected patients. Cytokine. 2013; 63 (2): 105–12. DOI: https://doi.org/10.1016/j.cyto.2013.04.016

32. Das C., Kumar V.S., Basak S., Gupta S., et al. Immunobiology of trophoblast cells. Indian J. Clin. Biochem. 2000; 15 (1): 60–4. DOI: https://doi.org/10.1007/BF02867545

33. Schlicht K., Rohmann N., Geisler C., Hollstein T., et al. Circulating levels of soluble dipeptidylpeptidase-4 are reduced in human subjects hospitalized for severe COVID-19 infections. Int. J. Obes. (Lond). 2020; 44 (11): 2335–8. DOI: https://doi.org/10.1038/s41366-020-00689-y

34. Iwata S., Yamaguchi N., Munakata Y., Ikushima H., et al. CD26/dipeptidyl peptidase IV differentially regulates the chemotaxis of T cells and monocytes toward RANTES: possible mechanism for the switch from innate to acquired immune response. Int. Immunol. 1999; 11: 417–26. DOI: https://doi.org/10.1093/intimm/11.3.417

35. Patterson B. K., Seethamraju H., Dhody K., Corley M.J. Disruption of the CCL5/RANTES-CCR5 pathway 1 restores immune 2 homeostasis and reduces plasma viral load in critical COVID-19. medRxiv. 2020; May 5: 05.02.20084673. DOI: https://doi.org/10.1101/2020.05.02. 20084673

36. Pigott R., Dillon LP., Hemingway I.H., Gearing A.J. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem. Biophys. Res. Commun. 1992; 187 (2): 584–9. DOI: https://doi.org/10.1016/0006-291x(92)91234-h

37. Oliva A., Rando E., Ismail D.A., De Angelis M., et al. Role of serum E-selectin as a biomarker of infection severity in coronavirus disease 2019. J. Clin. Med. 2021; 10 (17): 4018. DOI: https://doi.org/10.3390/jcm10174018

38. Vassiliou A.G., Keskinidou C., Jahaj E., Gallos P., et al. ICU admission levels of endothelial biomarkers as predictors of mortality in critically ill COVID-19 patients. Cells. 2021; 10 (1): 186. DOI: https://doi.org/10.3390/cells10010186

39. Birnhuber A., Fliesser E., Gorkiewicz G., Zacharias M., et al. Between inflammation and thrombosis — endothelial cells in COVID-19. Eur. Respir. J. 2021; 13: 2100377. DOI: https://doi.org/10.1183/13993003. 00377-2021

40. Sakamaki F., Ishizaka A., Handa M., Fujishima S., et al. Soluble form of P-selectin in plasma is elevated in acute lung injury. Am. J. Respir. Crit. Care Med. 1995; 151: 1821–6. DOI: https://doi.org/10.1164/ajrccm.151.6.7539327

41. Kaur S., Tripathi D.M., Yadav A. The enigma of endothelium in COVID-19. Front. Physiol. 2020; 11: 989. DOI: https://doi.org/10.3389/fphys.2020.00989

42. Barrett T.J., Lee A.H., Xia Y., Lin L.H., et al. Platelet and vascular biomarkers associate with thrombosis and death in coronavirus disease. Circ. Res. 2020; 127: 945–7. DOI: https://doi.org/10.1161/CIRCRESAHA.120.317803

43. Tong M., Jiang Y., Xia D., Xiong Y., et al. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J. Infect. Dis. 2020; 222: 894–8. DOI: https://doi.org/10.1093/infdis/jiaa349

44. Kaur S., Hussain S., Kolhe K., Kumar G., et al. Elevated plasma ICAM1 levels predict 28-day mortality in cirrhotic patients with COVID-19 or bacterial sepsis. JHEP Rep. 2021; 3 (4): 100303. DOI: https://doi.org/10.1016/j.jhepr.2021.100303

45. Smith-Norowitz T.A., Loeffler J., Norowitz Y.M., Kohlhoff S. Intracellular adhesion molecule-1 (ICAM-1) levels in convalescent COVID-19 serum: a case report. Ann. Clin. Lab. Sci. 2021; 51 (5): 730–4.

46. Syed F., Li W., Relich R.F., Russell P.M. Excessive matrix metalloproteinase-1 and hyperactivation of endothelial cells occurred in COVID-19 patients and were associated with the severity of COVID-19. J. Infect. Dis. 2021; 224 (1): 60–9. DOI: https://doi.org/10.1093/infdis/jiab167

47. Spadaro S., Fogagnolo A., Campo G., Zucchetti O., et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit. Care. 2021; 25 (1): 74. DOI: https://doi.org/10.1186/s13054-021-03499-4

48. Remy K.E., Mazer M., Striker D.A., Ellebedy A.H., et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020; 5 (17): e140329. DOI: https://doi.org/10.1172/jci.insight.140329

49. Ziadi A., Hachimi A., Admou B., Hazime R., et al. Lymphopenia in critically ill COVID-19 patients: a predictor factor of severity and mortality. Int. J. Lab. Hematol. 2021; 43: e38–40. DOI: https://doi.org/10.1111/ijlh.13351

50. Wang H.W., Babic A.M., Mitchell H.A., Liu K., et al. Elevated soluble ICAM1 levels induce immune deficiency and increase adiposity in mice. FASEB J. 2005; 19 (8): 1018–20. DOI: https://doi.org/10.1096/fj.04-3094fje

51. Schmal H., Czermak B.J., Lentsch A.B., Bless N.M., et al. Soluble ICAM-1 activates lung macrophages and enhances lung injury. J. Immunol. 1998; 161 (7): 3685–93. PMID: 9759893.

52. Ni L., Dong C. New checkpoints in cancer immunotherapy. Immunol. Rev. 2017; 276: 52–65. DOI: https://doi.org/10.1111/imr.12524

53. Kong Y., Wang Y., Wu X., Han J., et al. Storm of soluble immune checkpoints associated with disease severity of COVID-19. Signal Transduct. Target. Ther. 2020; 5: 192. DOI: https://doi.org/10.1038/s41392-020-00308-2

54. Schultheiß C., Paschold L., Simnica D., Mohme M., et al. Next generation sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease. Immunity. 2020; 53 (2): 442–55. DOI: https://doi.org/10.1016/j.immuni.2020.06.024

55. Ueland T., Heggelund L., Lind A., Holten A.R. Elevated plasma sTIM-3 levels in patients with severe COVID-19. J. Allergy Clin. Immunol. 2021; 147 (1): 92–8. DOI: https://doi.org/10.1016/j.jaci.2020.09.007

56. Carosella E.D., Rouas-Freiss N., Roux D.T.-L., Moreau P., et al. Chapter Two – HLA-G: an immune checkpoint molecule. Adv. Immunol. 2015; 127: 33–144. DOI: https://doi.org/10.1016/bs.ai.2015.04.001

57. Rizzo R., Neri L.M., Simioni C., Bortolotti D., et al. SARS-CoV-2 nucleocapsid protein and ultrastructural modifications in small bowel of a 4-week-negative COVID-19 patient. Clin. Microbiol. Infect. 2021; 27 (6): 936–7. DOI: https://doi.org/10.1016/j.cmi.2021.01.012

58. De Campos Fraga-Silva T.F., Maruyama S.R., Sorgi C.A., et al. COVID-19: Integrating the complexity of systemic and pulmonary immunopathology to identify biomarkers for different outcomes. Front. Immunol. 2021; 11: 599736. DOI: https://doi.org/10.3389/fimmu.2020.599736

59. Karonova T.L., Andreeva А.Т., Vashukova М.А. Serum 25(oH)D level in patients with CoVID-19. Zhurnal infektologii. 2020; 12 (3): 21–7. DOI: https://doi.org/10.22625/2072-6732-2020-12-3-21-27 (in Russian)

60. Khan A.H., Nasir N., Maha Q., Rehman R. Vitamin D and COVID-19: is there a role? J. Diabetes Metab. Disord. 2021; 20 (1): 1–8. DOI: https://doi.org/10.1007/s40200-021-00775-6

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»