Expression of Arg1 and MerTK by human macrophages activated by M2-polarizing stimuli and their role in determining low allostimulatory activity

Abstract

Introduction. One of the universal manifestations of the immunomodulatory activity of M2 macrophages in vitro is the ability to determine a low level of T cell proliferation in a mixed leukocyte culture compared to M1 macrophages. In experimental animals, polarization towards M2 phenotype is largely associated with metabolic reprogramming, in particular, changes in the expression of arginase 1 and tyrosine kinase Mer. However, in humans, the expression and significance of these molecules in determining the low allostimulatory activity of M2 phenotype macrophages remain unexplored.

The aim of the study was to evaluate the expression of Arg1 and MerTK in macrophages polarized by M2-polarizing stimuli in comparison with M1, and to evaluate the role of these molecules in determining the low allostimulatory activity of M2 macrophages.

Material and methods. Macrophages were generated from donor peripheral blood monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by polarization with interferon-γ (IFN-γ) – in M1, interleukin-4 (IL-4) – in M2a, and by interaction in apoptotic cells – in M2(LS) phenotypes. We studied the relative content of MerTK+ and Arg1+ cells, as well as the ability of macrophages to stimulate the proliferation of T-lymphocytes in mixed leukocyte culture (MLC).

Results. Human macrophages generated from circulating monocytes in the presence of GM-CSF express Arg1 and MerTK. The highest content of Arg1+ and MerTK+ cells was found in cultures of macrophages with the M2 phenotype, polarized not only under the influence of IL-4 (M2a), but also as a result of interaction with apoptotic cells (M2(LS)). The expression of Arg1 and MerTK was found to be inversely correlated to the allostimulatory activity of M2 macrophages in MLC. Moreover, blocking these molecules with anti-MerTK antibodies and the arginase 1 inhibitor nor-NOHA leads to an increase in the allostimulatory activity of M2 cells.

Conclusion. The data obtained indicate the expression of Arg1 and MerTK by M2 phenotype macrophages and the involvement of these molecules in determining the low allostimulatory activity of M2 macrophages, which indicates the implication of Arg1 and MerTK in macrophage-mediated modulation of the adaptive T-cell response.

Keywords:human macrophages; M2 phenotype; efferocytosis; arginase 1; tyrosine kinase Mer

For citation: Shevela E.Ya., Sakhno L.V., Maksimova A.A., Tikhonova M.A., Ostanin A.A., Chernykh E.R. Expression of Arg1 and MerTK by human macrophages activated by M2-polarizing stimuli and their role in determining low allostimulatory activity. Immunologiya. 2022; 43 (5): 515–24. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-515-524 (in Russian)

Funding. This study received financial support from the federal budget allocated for the fundamental scientific research area (registration No in EGISU NIOKTR 122011800324-4).

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The concept and design of the study – Chernykh E.R.; collection and processing of material – Sakhno L.V., Maksimova A.A., Shevela E.Ya.; cytofluorometry – Tikhonova M.A.; statistical processing – Sakhno L.V., Shevela E.Ya.; writing the text – Shevela E.Ya., Sakhno L.V., Chernykh E.R.; editing – Ostanin A.A.

References

1. Vega M.A., Corbi A.L. Human macrophage activation: Too many functions and phenotypes for single cell type. Immunologia. 2006; 25 (4): 248–72.

2. Fraternale A., Brundu S., Magnani M. Polarization and Repolarization of Macrophages. J Clin Cell Immunol. 2015; 6 (2): 319. DOI: https://doi.org/10.4172/2155-9899.1000319

3. Zizzo G., Hilliard B.A., Monestier M., Cohen P.L. Efficient clearance of early apoptotic cells by human macrophages requires «M2c» polarization and MerTK induction. J Immunol. 2012; 189 (7): 3508–20. DOI: https://doi.org/10.4049/jimmunol.1200662

4. Sakhno L.V., Shevela E.Ya., Tikhonova M.A., Ostanin A.A., Cherykh E.R. The phenotypic and functional features of human M2 macrophages generated under low serum conditions. Scand J Immunol. 2015; 83 (2): 151–9. DOI: https://doi.org/10.1111/sji.12401

5. Yankovskaya A.A., Shevela E.Y., Sakhno L.V., Tikhonova M.A., Dome A.S., Ostanin A.A., Chernykh E.R. Аllostimulatory activity as a criterion of the functional phenotype of human macrophages. Hum Immunol. 2019; 80 (10): 890–6. DOI: https://doi.org/10.1016/j.humimm.2019.08.003

6. Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009; 158: 638–51. DOI: https://doi.org/10.1111/j.1476-5381.2009.00291.x

7. Cai B., Kasikara C., Doran A. C., Ramakrishnan R., Birge R.B., Tabas I. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci Signal. 2018; 11 (549): eaar3721. DOI: https://doi.org/10.1126/scisignal.aar3721

8. Crittenden M.R., Baird J., Friedman D., Savage T., Uhde L., Alice A., Cottam B., Young K., Newell P., Nguyen C., Bambina S., Kramer G., Akporiaye E. Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy. Oncotarget. 2016; 7: 78 653–66. URL: https://www.oncotarget.com/article/11823/text/

9. Paolino M., Penniger J.M. The role of TAM family receptors in immune cell function: implications for cancer therapy. Cancers. 2016; 8: 97. DOI: https://doi.org/10.3390/cancers8100097

10. Viola A., Munari F., Sánchez-Rodríguez R., Scolaro T., Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019; 10: 1462. DOI: https://doi.org/10.3389/fimmu.2019.01462

11. Mattila J.T., Ojo O.O., Kepka-Lenhart D., Marino S., Kim J.H., Eum S.Y., Via L.E., Barry C.E. 3rd, Klein E., Kirschner D.E., Morris S.M. Jr., Lin P.L., Flynn J.L. Microenvironments in tuberculosis granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol. 2013; 191: 773–84. DOI: https://doi.org/10.4049/jimmunol.1300113

12. Thomas A.C., Sala-Newby G.B., Ismail Y., Johnson J.L., Pasterkamp G., Newby A.C. Genomics of foam cells and nonfoamy macrophages from rabbits identifies arginase-1 as a differential regulator of nitric oxide production. Arterioscler Thromb Vasc Biol. 2007; 27: 571–7. DOI: https://doi.org/10.461/01.ATV.0000256470.23842.94

13. Munder M., Mollinedo F., Calafat J., Canchado J., Gil-Lamaignere C., Fuentes J.M., Luckner C., Doschko G., Soler G., Eichmann K., Müller F.M., Ho A.D., Goerner M., Modolell M. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood. 2005; 105; 2549–56. doi: https://doi.org/10.1182/blood-2004-07-2521

14. Sakhno L.V., Shevela E.Y., Tikhonova M.A., Ostanin A.A., Chernykh E.R. Influence of deprivation apoptosis on GM-CSF-induced macrophage differentiation. Immunologiya. 2017; 38 (2): 87–90. DOI: http://dx.doi.org/10.18821/0206-4952-2017-38-2-87-90 (in Russian)

15. Momma T.Y., Ottaviani J.I. Arginase inhibitor, Nω-hydroxy-L-norarginine, spontaneously releases biologically active NO-like molecule: limitations for research applications. Free Radic Biol Med. 2020; 152: 74–82. DOI: https://doi.org/10.1016/j.freeradbiomed.2020.02.033

16. Daseke M.J., Tenkorang-Impraim M.A.A., Ma Y., Chalise U., Konfrst S.R., Garrett M.R., DeLeon-Pennell K.Y., Lindsey M.L. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. J Mol Cell Cardiol. 2020; 145: 112–21. DOI: https://doi.org/10.1016/j.yjmcc.2020.06.006

17. Van Dyken S.J., Locksley R.M. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol. 2013; 31: 317–43. DOI: https://doi.org/10.1146/annurev-immunol-032712-095906

18. Makita N., Hizukuri Y., Yamashiro K., Murakawa M., Hayashi Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int Immunol. 2015; 27 (3): 131–41. DOI: https://doi.org/10.1093/intimm/dxu090

19. Yurdagul A. Jr., Subramanian M., Wang X., Crown S.B., Ilkayeva O.R., Darville L., Kolluru G.K., Rymond C.C., Gerlach B.D., Zheng Z., Kuriakose G., Kevil C.G., Koomen J.M., Cleveland J.L., Muoio D.M., Tabas I. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 2020; 31: 518–33.e10. DOI: https://doi.org/10.1016/j.cmet.2020.01.001

20. Menzies F.M., Henriquez F.L., Alexander J., Roberts C.W. Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation. Clin Exp Immunol. 2010; 160 (3): 369–79. DOI: https://doi.org/10.1111/j.1365-2249.2009.04086.x

21. Su X., Xu Y., Fox G.C., Xiang J., Kwakwa K.A., Davis J.L., Belle J.I., Lee W.C., Wong W.H., Fontana F., Hernandez-Aya L.F., Kobayashi T., Tomasson H.M., Su J., Bakewell S.J., Stewart S.A., Egbulefu C., Karmakar P., Meyer M.A., Veis D.J., DeNardo D.G., Lanza G.M., Achilefu S., Weilbaecher K.N. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J Clin Invest. 2021; 131 (20): e145296. DOI: https://doi.org/10.1172/JCI145296

22. Thomas A.C., Mattila J.T. «Of mice and men»: arginine metabolism in macrophages. Front Immunol. 2014; 5: 479. DOI: https://doi.org/10.3389/fimmu.2014.00479

23. Sakhno L.V., Shevela E.Y., Tikhonova M.A., Maximova A.A., Tyrinova T.V., Ostanin A.A., Chernykh E.R. Efferocytosis modulates arginase-1 and tyrosine kinase Mer expression in GM-CSF-differentiated human macrophages. Byulleten’ eksperimental’noi biologii i meditsiny [Bulletin of Experimental Biology and Medicine]. 2020; 12: 768–79. DOI: https://doi.org/10.47056/0365-9615-2020-170-12-768-771 (in Russian)

24. Mohd Idrus F.N., Ahmad N.S., Hoe C.H., Azian M., Norfuad F.A., Yusof Z., Wan I.W.Y.H., Mohamed A.A.A., Yvonne-Tee G.B. Differential polarization and the expression of efferocytosis receptor MerTK on M1 and M2 macrophages isolated from coronary artery disease patients. BMC Immunol. 2021; 22: 21–9. DOI: https://doi.org/10.1186/s12865-021-00410-2

25. Cabezón R., Carrera-Silva E.A., Flórez-Grau G., Errasti A.E., Calderón-Gómez E., Lozano J.J., España C., Ricart E., Panés J., Rothlin C.V., Benítez-Ribas D. MERTK as negative regulator of human T cell activation. J Leukoc Biol. 2015; 97: 751–60. DOI: https://doi.org/10.1189/jlb.3A0714-334R

26. Vonwirth V., Bülbül Y., Werner A., Echchannaoui H., Windschmitt J., Habermeier A., Ioannidis S., Shin N., Conradi R., Bros M., Tenzer S., Theobald M., Closs E.I., Munder M. Inhibition of arginase 1 liberates potent T cell immunostimulatory activity of human neutrophil granulocytes. Front Immunol. 2021; 11: 617699. DOI: https://doi.org/10.3389/fimmu.2020.617699

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»