The content of platelet-leukocyte coaggregates in the peripheral blood of healthy children of different ages

Abstract

Introduction. Currently, intercellular interactions are widely studied, which are based on signaling mechanisms mediated by cytokines, adhesion molecules and various components of the vascular wall. The formation of contacts between platelets and leukocytes are important part in the mechanisms that ensure the migration of leukocytes to the area of damage and the development of immune and reparative processes there. It has been established that platelets can interact with neutrophils, monocytes and lymphocytes. In the literature information on the adhesive interaction of platelets with neutrophils, monocytes, lymphocytes and their subpopulations in the blood of healthy children of different age groups is not presented.

The aim of the study – to research the absolute and relative content of platelet coaggregates in the total pool of leukocytes, as well as separately with neutrophils, monocytes, lymphocytes, T- and B-lymphocytes, NK and NKT cells in the peripheral blood of healthy children of different ages.

Material and methods. The object of the study were samples of venous blood of 111 healthy children (boys and girls) aged from 3 months to 14 years old. To detect coaggregates, monoclonal antibodies conjugated with various fluorochromes were used. The parameters under study were determined by flow cytometry.

Results. It was found that the absolute content of platelet-neutrophil coaggregates is minimal in children of the first year of life and maximal in the group of children from 6 to 8 years old. It was found that the absolute content of coaggregates decreased in the total pool of lymphocytes, as well as in all their studied subpopulations, as children grew. With increasing age, the relative content of total platelet-leukocyte coaggregates and platelet-monocyte coaggregates in a particular cell population increased against the background of a constant level of platelet-neutrophil coaggregates. The relative content of platelet-monocyte coaggregates and platelet-neutrophil coaggregates increased in every leucocyte population regarding to PLC with the growth of children, and platelet-lymphocyte coaggregates content, on the contrary, decreased. Physiological crossovers of platelet-neutrophil coaggregates and platelet-lymphocyte coaggregates were found in their relative and absolute content.

Conclusion. The results of the study demonstrate changes in the absolute and relative content of platelet-leukocyte coaggregates in the peripheral blood of healthy children depending on age.

Keywords:platelet-leukocyte adhesion; healthy children; physiological platelet-leukocyte crossover

For citation: Bogomyagkova E.N., Solpov A.V., Tereshkov P.P., Trushina N.G., Vitkovsky Yu.A. The content of platelet-leukocyte coaggregates in peripheral blood in healthy children. Immunologiya. 2022; 43 (6): 702–13. DOI: https://doi.org/10.33029/0206-4952-2022-43-6-702-713 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. Research concept and design – Bogomyagkova E.N., Solpov A.V., Vitkovsky Yu.A.; collection and processing of material – Bogomyagkova E.N., Tereshkov P.P. Trushina N.G; text writing – Bogomyagkova E.N., Solpov A.V., Vitkovsky Yu.A.

References

1. Vitkovsky Yu.A., Kuznik B.I., Solpov A.V. Phenomenon of lymphocytic-platelet rosette formation. Immunologiya. 1999; (4): 35–7. (in Russian)

2. Vitkovsky Yu.A., Kuznik B.I., Solpov A.V. Pathogenetic significance of lymphocytic-platelet adhesion. Meditsinskaya immunologiya. 2006; 8 (5–6): 745–3. (in Russian)

3. Rossaint J., Margraf A., Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front. Immunol. 2018; 9: 2712. DOI: https://doi.org/10.3389/fimmu.2018.02712

4. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pão C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020; 136 (11): 1330–41. DOI: https://doi.org/10.1182/blood.2020007252

5. Solpov A., Shenkman B., Vitkovsky Y., Brill G., Koltakov A., Farzam N., Varon D., Bank I., Savion N. Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: role of platelet aggregation, integrins, and non-integrin receptors. Thromb. Haemost. 2006; 95 (5): 815–21.

6. Kuznik B.I., Vitkovsky Yu.A., Solpov A.V. Adhesive molecules and leukocyte-platelet interactions. Vestnik germatologii. 2006; 2 (2): 42–55. (in Russian)

7. Shenkman B., Brill G., Solpov A., Vitkovsky Y., Kuznik B., Koltakov A., Kotev-Emeth S., Savion N., Bank I. CD4+ lymphocytes require platelets for adhesion to immobilized fibronectin in flow: role of beta(1) (CD29)-, beta(2) (CD18)-related integrin’s and non-integrin receptors. Cell. Immunol. 2006; 242 (1): 52–9. DOI: https://doi.org/10.1016/j.cellimm.2006.09.005

8. Solpova O.A. Participation of TCRαβ- and γδ-T-lymphocytes, P-selectin in the formation of cell-platelet coaggregates. Zabaykal’skiy meditsinskiy vestnik. 2016; (2): 71–9. (in Russian)

9. Zucoloto A.Z., Jenne C.N. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front. Cardiovasc. Med. 2019; 6: 85. DOI: https://doi.org/10.3389/fcvm.2019.00085

10. Pircher J., Engelmann B., Massberg S., Schulz C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb. Haemost. 2019; 119 (8): 1274–82. DOI: https://doi.org/10.1055/s-0039-1692983

11. Da Costa Martins P., Van den Berk N., Ulfman L.H., Koenderman L., Hordijk P.L., Zwaginga J.J. Platelet-monocyte complexes support monocyte adhesion to endothelium by enhancing secondary tethering and cluster formation. Arterioscler. Thromb. Vasc. Biol. 2004; 24 (1): 193–9. DOI: https://doi.org/10.1161/01.ATV.0000106320.40933.E5

12. Yari F., Motefaker M., Nikougoftar M., Khayati Z. Interaction of platelet-derived microparticles with a human B-lymphoblast cell line: a clue for the immunologic function of the microparticles. Transfus. Med. Hemother. 2018; 45 (1): 55–61. DOI: https://doi.org/10.1159/000479072

13. Yip C., Ignjatovic V., Attard C., Monagle P., Linden M.D. First report of elevated monocyte-platelet aggregates in healthy children. PLoS One. 2013; 8 (6): e67416. DOI: https://doi.org/10.1371/journal.pone.0067416

14. Khaydukov S.V., Baydun L.A., Zurochka A.V., Totolyan A.A. Standardized technology «Study of the subpopulation composition of peripheral blood lymphocytes using flow cytofluorometer-analyzers» (PRO­JECT). Meditsinskaya immunologiya. 2012; 14 (3): 255–8. (in Russian)

15. Finsterbusch M., Schrottmaier W.C., Kral-Pointner J.B., Salzmann M., Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018; 29 (7): 677–85. DOI: https://doi.org/:10.1080/09537104.2018.1430358

16. Bogomyagkova E.N., Solpov A.V., Vitkovsky Yu.A., Tereshkov P.P. The content of platelet coaggregates with αβ-, γδ-Т-lymphocytes and their some minor subpopulations in the blood of healthy children. Immunologiya. 2022; 43 (1): 78–88. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-78-88 (in Russian)

17.Li K., Peng Y.G., Yan R.H., Song W.Q., Peng X.X., Ni X. Age-dependent changes of total and differential white blood cell counts in children. Chin. Med. J. (Engl.). 2020; 133 (16): 1900–7. DOI: https://doi.org/10.1097/CM9.0000000000000854

18.Herken K., Glauner M., Robert S.C., Maas M., Zippel S., Nowak-Göttl U., Zieger B., Lahav J., Fender A.C., Jurk K., Kehrel B.E. Age-dependent control of collagen-dependent platelet responses by thrombospondin-1-comparative analysis of platelets from neonates, children, adolescents, and adults. Int. J. Mol. Sci. 2021; 22 (9): 4883. DOI: https://doi.org/10.3390/ijms22094883

19.Ponomarenko E.A., Ignatova A.A., Polokhov D.M., Khismatullina R.D., Kurilo D.S., Shcherbina A., Zharkov P.A., Maschan A.A., Novichkova G.A., Panteleev M.A. Healthy pediatric platelets are moderately hyporeactive in comparison with adults’ platelets. Platelets. 2022; 33 (5): 727–34. DOI: https://doi.org/10.1080/09537104.2021.1981848

20. McDonald B., Davis R.P., Kim S.J., Tse M., Esmon C.T., Kolaczkowska E., Jenne C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017; 129 (10): 1357–67. DOI: https://doi.org/10.1182/blood-2016-09-741298

21.Pitchford S., Pan D., Welch H.C. Platelets in neutrophil recruitment to sites of inflammation. Curr. Opin. Hematol. 2017; 24 (1): 23–31. DOI: https://doi.org/10.1097/MOH.0000000000000297

22. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018; 18 (2): 134–47. DOI: https://doi.org/10.1038/nri.2017.105

23. Gaertner F., Ahmad Z., Rosenberger G., Fan S., Nicolai L., Busch B., Yavuz G., Luckner M., Ishikawa-Ankerhold H., Hennel R., Benechet A., Lorenz M., Chandraratne S., Schubert I., Helmer S., Striednig B., Stark K., Janko M., Böttcher R.T., Verschoor A., Leon C., Gachet C., Gudermann T., Mederos Y. Schnitzler M., Pincus Z., Iannacone M., Haas R., Wanner G., Lauber K., Sixt M., Massberg S. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell. 2017; 171 (6): 1368–82.e23. DOI: https://doi.org/10.1016/j.cell.2017.11.001

24. Sreeramkumar V., Adrover J.M., Ballesteros I., Cuartero M.I., Rossaint J., Bilbao I., Nácher M., Pitaval C., Radovanovic I., Fukui Y., McEver R.P., Filippi M.D., Lizasoain I., Ruiz-Cabello J., Zarbock A., Moro M.A., Hidalgo A. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014; 346 (6214): 1234–8. DOI: https://doi.org/10.1126/science.1256478

25. Gerrits A.J., Frelinger A.L. 3rd, Michelson A.D. Whole blood analysis of leukocyte-platelet aggregates. Curr. Protoc. Cytom. 2016; 78: 6.15.1–6.15.10. DOI: https://doi.org/10.1002/cpcy.8

26. Du Y., Liu X., Guo S.W. Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. Hum. Reprod. 2017; 32 (4): 794–810. DOI: https://doi.org/10.1093/humrep/dex014

27. Maurer S., Ferrari de Andrade L. NK cell interaction with platelets and myeloid cells in the tumor milieu. Front. Immunol. 2020; 11: 608849. DOI: https://doi.org/10.3389/fimmu.2020.608849

28. Ding Y., Zhou L., Xia Y., Wang W., Wang Y., Li L., Qi Z., Zhong L., Sun J., Tang W., Liang F., Xiao H., Qin T., Luo Y., Zhao X., Shu Z., Ru Y., Dai R., Wang H., Wang Y., Zhang Y., Zhang S., Gao C., Du H., Zhang X., Chen Z., Wang X., Song H., Yang J., Zhao X. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J. Allergy Clin. Immunol. 2018; 142 (3): 970–3.e8. DOI: https://doi.org/10.1016/j.jaci.2018.04.022

29. Zamora C., Cantó E., Nieto J.C., Bardina J., Diaz-Torné C., Moya P., Magallares B., Ortiz M.A., Julià G., Juarez C., Llobet J.M., Vidal S. Binding of platelets to lymphocytes: a potential anti-inflammatory therapy in rheumatoid arthritis. J. Immunol. 2017; 198 (8): 3099–108. DOI: https://doi.org/10.4049/jimmunol.1601708

30. Tan S., Zhang J., Sun Y., Gisterå A., Sheng Z., Malmström R.E., Hou M., Peng J., Ma C., Liao W., Li N. Platelets enhance CD4+ central memory T cell responses via platelet factor 4-dependent mitochondrial biogenesis and cell proliferation. Platelets. 2022; 33 (3): 360–70. DOI: https://doi.org/10.1080/09537104.2021.1936479

31. Koupenova M., Clancy L., Corkrey H.A., Freedman J.E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018; 122 (2): 337–51. DOI: https://doi.org/10.1161/CIRCRESAHA.117.310795

32. Gaertner F., Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat. Rev. Immunol. 2019; 19 (12): 747–60. DOI: https://doi.org/10.1038/s41577-019-0202-z

33. Gusel’nikova V.V., Polevshchikov A.V. Thymic mast cells: at three-way crossroads. Immunologiya. 2021; 42 (4): 327–36. DOI: https://doi.org/10.33029/0206-4952-2021-42-4-327-336 (in Russian)

34.Thomas R., Wang W., Su D.M. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing. 2020; 17: 2. DOI: https://doi.org/10.1186/s12979-020-0173-8

35.Vignesh P., Rawat A., Shandilya J.K., Singh Sachdeva M.U., Ahluwalia J., Singh S. Monocyte platelet aggregates in children with Kawasaki disease – a preliminary study from a tertiary care centre in North-West India. Pediatr. Rheumatol. Online J. 2021; 19 (1): 25. DOI: https://doi.org/10.1186/s12969-021-00515-3

36.Han P., Hanlon D., Arshad N., Lee J.S., Tatsuno K., Robinson E., Filler R., Sobolev O., Cote C., Rivera-Molina F., Toomre D., Fahmy T., Edelson R. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. Sci. Adv. 2020; 6 (11): eaaz1580. DOI: https://doi.org/10.1126/sciadv.aaz1580

37.Ivanov I.I., Apta B.H.R., Bonna A.M., Harper M.T. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci. Rep. 2019; 9 (1): 13397. DOI: https://doi.org/10.1038/s41598-019-49635-7

38.Glezeva N., Gilmer J.F., Watson C.J., Ledwidge M. A central role for monocyte-platelet interactions in heart failure. J. Cardiovasc. Pharmacol. Ther. 2016; 21 (3): 245–61. DOI: https://doi.org/10.1177/1074248415609436

39.Li T., Yang Y., Li Y., Wang Z., Ma F., Luo R., Xu X., Zhou G., Wang J., Niu J., Lv G., Crispe I.N., Tu Z. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. J. Clin. Invest. 2022; 132 (4): e150101. DOI: https://doi.org/10.1172/JCI150101

40. Ma D.Y., Clark E.A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 2009; 21 (5): 265–72. DOI: https://doi.org/10.1016/j.smim.2009.05.010

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»