Studying of protein-DNA interactions in the cells of immune system using chromatin immunoprecipitation and chromatin immunocleavage

Abstract

Cells of the immune system respond to infections and other insults by altering expression of hundreds of genes enforcing immune defense. Regulation of gene expression depends on interactions of genomic DNA with proteins, such as histones, transcription factors, RNA polymerases, cofactor proteins. Here, we review two methods of analysing DNA-protein interactions directly in the cells: chromatin immunoprecipitation (ChIP) and chromatin immunocleavage (ChIC). We discuss main technical characteristics and modifications, advantages and disadvantages of either technique. Finally, we present several illustrations of how ChIP and ChIC can be applied in fundamental and clinically oriented immunological studies.

Keywords:chromatin; chromatin immunoprecipitation; chromatin immunocleavage; immune system; epigenetics; histones; transcription factors

For citation: Masyutina A.M., Murugina N.E., Pashenkov M.V. Studying of protein-DNA interactions in the cells of immune system using chromatin immunoprecipitation and chromatin immunocleavage. Immunologiya. 2022; 43 (6): 722–36. DOI: https://doi.org/10.33029/0206-4952-2022-43-6-722-736 (in Russian)

Funding. The work was supported by the Russian Science Foundation grant No. 21-15-00211.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Analysis of literature data, writing the article – Masyutina A.M.; analysis of literature data, writing the article – Murugina N.E.; editing and approval of the final version of the article – Pashenkov M.V.

References

1. Morrison A.J. Chromatin-remodeling links metabolic signaling to gene expression. Mol. Metab. 2020; 38 100973. DOI: https://doi.org/10.1016/j.molmet.2020.100973 PMID: 32251664

2. Wang J., Zhuang J., Iyer S., et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 2012; 22 (9): 1798–1812. DOI: https://doi.org/10.1101/gr.139105.112 PMID: 22955990

3. Glass C.K., Natoli G. Molecular control of activation and priming in macrophages. Nat. Immunol. 2016; 17 (1): 26–33. DOI: https://doi.org/10.1038/ni.3306 PMID: 26681459

4. Fenley A.T., Anandakrishnan R., Kidane Y.H., et al. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core. Epigenetics and Chromatin. 2018; 11 (1): 11. DOI: https://doi.org/10.1186/s13072-018-0181-5 PMID: 29548294

5. Kouzarides T. Chromatin Modifications and Their Function. Cell. 2007; 128 (4): 693–705. DOI: https://doi.org/10.1016/j.cell.2007.02.005 PMID: 17320507

6. Devenish L.P., Mhlanga M.M., Negishi Y. Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses. Front. Immunol. 2021; 12 DOI: https://doi.org/10.3389/FIMMU.2021.662565 PMID: 34046034

7. Felton J.M., Vallabh S., Parameswaran S., et al. Epigenetic Analysis of the Chromatin Landscape Identifies a Repertoire of Murine Eosinophil-Specific PU.1-Bound Enhancers. J. Immunol. 2021; 207 (4): 1044–1054. DOI: https://doi.org/10.4049/jimmunol.2000207 PMID: 34330753

8. Messi M., Giacchetto I., Nagata K., et al. Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat. Immunol. 2003; 4 (1): 78–86. DOI: https://doi.org/10.1038/ni872 PMID: 12447360

9. Kleinnijenhuis J., Quintin J., Preijers F., et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. U. S. A. 2012; 109 (43): 17537–17542. DOI: https://doi.org/10.1073/pnas.1202870109 PMID: 22988082

10. Javierre B.M., Fernandez A.F., Richter J., et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010; 20 (2): 170–179. DOI: https://doi.org/10.1101/gr.100289.109 PMID: 20028698

11. Lisi S., Trovato M., Vitaloni O., et al. Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. Int. J. Mol. Sci. 2022; 23 (16): 8892. DOI: https://doi.org/10.3390/ijms23168892 PMID: 36012156

12. Gilmour D.S., Lis J.T. Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc. Natl. Acad. Sci. 1984; 81 (14): 4275–4279. DOI: https://doi.org/10.1073/pnas.81.14.4275 PMID: 6379641

13. Solomon M.J., Larsen P.L., Varshavsky A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 1988; 53 (6): 937–947. DOI: https://doi.org/10.1016/s0092-8674(88)90469-2 PMID: 2454748

14. Buck M.J., Lieb J.D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics. 2004; 83 (3): 349–360. DOI: https://doi.org/10.1016/j.ygeno.2003.11.004 PMID: 14986705

15. Robertson G., Hirst M., Bainbridge M., et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods. 2007; 4 (8): 651–657. DOI: https://doi.org/10.1038/nmeth1068

16. Pedre X., Mastronardi F., Bruck W., et al. Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J. Neurosci. 2011; 31 (9): 3435–3445. DOI: https://doi.org/10.1523/JNEUROSCI.4507-10.2011 PMID: 21368055

17. Schmidt D., Wilson M.D., Spyrou C., et al. ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods. 2009; 48 (3): 240–248. DOI: https://doi.org/10.1016/j.ymeth.2009.03.001 PMID: 19275939

18. Acevedo L.G., Iniguez A.L., Holster H.L., et al. Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques. 2007; 43 (6): 791–797. DOI: https://doi.org/10.2144/000112625 PMID: 18251256

19. Dahl J.A., Collas P. Q2ChIP, a Quick and Quantitative Chromatin Immunoprecipitation Assay, Unravels Epigenetic Dynamics of Developmentally Regulated Genes in Human Carcinoma Cells. Stem Cells. 2007; 25 (4): 1037–1046. DOI: https://doi.org/10.1634/stemcells.2006-0430 PMID: 17272500

20. DeCaprio J., Kohl T.O. Chromatin immunoprecipitation. Cold Spring Harb. Protoc. 2020; 2020 (8): 354–364. DOI: https://doi.org/10.1101/pdb.prot098665 PMID: 32747583

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»