NMDA-receptors regulate the genes of key immune functions in lymphocytes of multiple sclerosis patients

Abstract

Multiple sclerosis is an autoimmune demyelinating inflammatory disorder ofthe central nervous system. In addition to autoimmune mechanisms neurotransmitter glutamate plays a significant role in the destruction of myelin, oligodendrocyte and neuronal death. It was shown that glutamate produced by activated macrophages and microglia by ionotropic and metabotropic receptors mediates excitotoxic process which contributes to the formation and maintenance of neurodegeneration in MS. Recently the evidences were found that glutamate may act as an immunomodulator by control of functions of infiltrated T-cells in inflammation tissues. Furthermore, immunomodulation may be carried out by the glutamate ionotropic receptors, in particular the NMDA-subtype, at the level of peripheral T-lymphocytes. The aim of this study was the investigation of the role of NMDA-receptors in the regulation of immunocompetent cells functions by the comparative analysis of the genes expression profile in peripheral blood mononuclear cells from multiple sclerosis patients using a commercial kit Human Signal Transduction Pathway Finder PCR Array. It has been shown that in peripheral blood mononuclear cells from multiple sclerosis patients the antagonist NMDA-receptors (+)-МК801 caused the alteration of expression of genes which are composed to the closely related and overlapping clusters of biological processes such as apoptosis, phosphorylation, cytokine and chemokine signaling. These data suggest that the NMDA-receptors could be involved in the modulation of some of the key functions of mononuclear cells, as well as in the regulation of chemotaxis of immune cells in patients with multiple sclerosis.

Keywords:multiple sclerosis; NMDA-receptors; transcriptome analysis; peripheral blood mononuclear cells

Received 19.04.2018. Accepted for publication 16.05.2018.

For citation: Kuzmina U.Sh., Zainullina L.F., Sadovnikov S.V., Vakhitov V.A., Bakhtiyarova K.Z., Vakhitova Yu.V NMDA-receptors regulate the genes of key immune functions in lymphocytes of multiple sclerosis patients. Immunologiya. 2019; 40 (1): 27-34. doi: 10.24411/0206-4952-2019-11003. (in Russian)

Acknowledgments. The work is done in the framework of the state assignment OFITS IBG RAS (No. AAAA-A16-116020350033-8). The studies were performed using equipment of the center "Bionica" (Department of biochemical research methods and nanobiotechnology RCCP Agidel, Ufa).

Conflict of interest. The authors declare no conflict of interest.

References

1. Shmidt T.E., Jahno N.N. Multiple sclerosis: a guide for doctors. 5th ed. Moscow: MEDpress-inform, 2016. (in Russian)

2. Boyko A.N., Petrov S.V., Nesterova V.A., Gusev E.I. Mechanisms of development of neurodegenerative processes in multiple sclerosis: neuroprotective influence of beta-interferons today and neurotrophic factors - tomorrow. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2003; (Spec No. 2): 83-90. (in Russian)

3. Friese M.A., Schattling B., Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014; 10: 225-38. doi: 10.1038/nrneurol.2014.37. URL: https://pubmed.ncbi.nlm.nih.gov/24638138-mechanisms-of-neurodegeneration-and-axonal-dysfunction-in-multiple-sclerosis/

doi: 10.1038/nrneurol.2014.37

4. Levite M. Glutamate. T cells and multiple sclerosis. J. Neural Transm. (Vienna). 2017; 124: 775-98. doi: 10.1007/s00702-014-1167-5.

doi: 10.1007/s00702-014-1167-5

5. Schori H., Yoles E., Schwartz M. T-cell-based immunity counteracts the potential toxicity of glutamate in the central nervous system. J. Neuroimmunol. 2001; 119: 199-204.

6. Pitt D., Werner P., Raine C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 2000; 6: 67-70. doi: 10.1038/71555. URL: https://pubmed.ncbi.nlm.nih.gov/10613826-glutamate-excitotoxicity-in-a-model-of-multiple-sclerosis/

doi: 10.1038/71555

7. Paul C., Bolton C. Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-D-aspartate receptor antagonist memantine. J. Pharmacol. Exp. Ther. 2002; 302: 50-7.

8. Abdurasulova I.N., Serdyuk S.E., Gmiro V.E. The combined blockade of NMDA and GluR1 AMPA receptors decreases severity of neurologic disturbances and duration of the experimental allergic encephalomyelitis in rats. Neyroimmunologiya. 2007; (1): 4-11. (in Russian)

9. Smith T., Groom A., Zhu B., Turski L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat. Med. 2000; 6: 62-6. doi: 10.1371/journal.pone.0034933. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034933

doi: 10.1371/journal.pone.0034933

10. Zainullina L.F., Jamidanov R.S., Vakhitov V.A., Vakhitova Yu.V. NMDA- receptors are possible components of the depot-dependent input of Ca2 + into human T-lymphocytes. Biokhimiya. 2011; 76 (11): 1517-24. (in Russian)

11. Ganor Y., Levite M. The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and autoimmune mediated demyelination. Mult. Scler. 2008; 14: 577-94. URL: https://pubmed.ncbi.nlm.nih.gov/24584970-the-neurotransmitter-glutamate-and-human-t-cells-glutamate-receptors-and-glutamate-induced-direct-and-potent-effects-on-normal-human-t-cells-cancerous-human-leukemia-and-lymphoma-t-cells-and-autoimmune-human-t-cells/

doi: 10.1007/s00702-014-1167-5

12. Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018; 17 (2): 162-73. doi: 10.1016/S1474-4422(17)30470-2. URL: https://pubmed.ncbi.nlm.nih.gov/29275977-diagnosis-of-multiple-sclerosis-2017-revisions-of-the-mcdonald-criteria/

doi: 10.1016/S1474-4422(17)30470-2

13. Weiner H.L., Ellison H.L. A working protocol to be used as a guideline for trials in multiple sclerosis. Arch. Neurol. 1983; 40: 704-10.

14. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J. Clin. Lab. Invest. 1968; 97: 77-89.

15. Huang W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009; 4: 44-57. doi: 10.1038/nprot.2008.211. URL: https://pubmed.ncbi.nlm.nih.gov/19131956-systematic-and-integrative-analysis-of-large-gene-lists-using-david-bioinformatics-resources/

doi: 10.1038/nprot.2008.211

16. Benjamini Y., Hochberg Y.J. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995; 57: 289-300.

17. Kuzmina U.Sh., Zainullina L.F., Sadovnikov S.V., Vakhitov V.A. et al. NMDA- receptors regulates the genes of the key immune functions in human peripheral blood mononuclear cells. Byulleten’ eksperimental’noi biologii i meditsiny. 2018; 165 (2): 216-20. (in Russian)

18. Kemppinen A.K., Kaprio J., Palotie A., Saarela J. Systematic review of genome-wide expression studies in multiple sclerosis. BMJ Open. 2011; 1 (1): e000053.

19. Lindberg R.L., Kappos L. Transcriptional profiling of multiple sclerosis: towards improved diagnosis and treatment. Expert Rev. Mol. Diagn. 2006; 6: 843-55. doi: 10.1586/14737159.6.6.843. URL: https://pubmed.ncbi.nlm.nih.gov/17140371-transcriptional-profiling-of-multiple-sclerosis-towards-improved-diagnosis-and-treatment/

doi: 10.1586/14737159.6.6.843

20. Liu M., Hou X., Zhang P. Hao Y. et al. Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis. Mol. Biol. Rep. 2013; 40: 3731-7. doi: 10.1007/s11033-012-2449-3. URL: https://pubmed.ncbi.nlm.nih.gov/23456643-microarray-gene-expression-profiling-analysis-combined-with-bioinformatics-in-multiple-sclerosis/

doi: 10.1007/s11033-012-2449-3

21. Paraboschi E.M., Cardamone G., Rimoldi V, Gemmati D. et al. Meta-analysis of multiple sclerosis microarray data reveals dysregulation in RNA splicing regulatory genes. Int. J. Mol. Sci. 2015; 16: 23 463-81. doi: 10.3390/ijms161023463. URL: https://pubmed.ncbi.nlm.nih.gov/26437396-meta-analysis-of-multiple-sclerosis-microarray-data-reveals-dysregulation-in-rna-splicing-regulatory-genes/

doi: 10.3390/ijms161023463

22. Achiron A., Gurevich M., Friedman N., Kaminski N. et al. Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann. Neurol. 2004; 55: 410-7. doi: 10.1002/ana.20008. URL: https://pubmed.ncbi.nlm.nih.gov/14991819-blood-transcriptional-signatures-of-multiple-sclerosis-unique-gene-expression-of-disease-activity/

doi: 10.1002/ana.20008

23. Iglesias A.H., Camelo S., Hwang D., Villanueva R. et al. Microarray detection of E2F pathway activation and other targets in multiple sclerosis peripheral blood mononuclear cells. J.Neuroimmunol. 2004; 150: 163-77. doi: 10.1016/j.jneuroim.2004.01.017. URL: https://pubmed.ncbi.nlm.nih.gov/15081262-microarray-detection-of-e2f-pathway-activation-and-other-targets-in-multiple-sclerosis-peripheral-blood-mononuclear-cells/

doi: 10.1016/j.jneuroim.2004.01.017

24. Bomprezzi R., Ringner M., Kim S., Bittner M.L. et al. Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum. Mol. Genet. 2003: 12: 2191-9. doi: 10.1093/hmg/ddg221. URL: https://pubmed.ncbi.nlm.nih.gov/12915464-gene-expression-profile-in-multiple-sclerosis-patients-and-healthy-controls-identifying-pathways-relevant-to-disease/

doi: 10.1093/hmg/ddg221

25. Satoh J., Nakanishi M., Koike F., Miyake S. et al. Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis. 2005; 18 (3): 537-50. doi: 10.1016/j.nbd.2004.10.007. URL: https://pubmed.ncbi.nlm.nih.gov/15755681-microarray-analysis-identifies-an-aberrant-expression-of-apoptosis-and-dna-damage-regulatory-genes-in-multiple-sclerosis/

doi: 10.1016/j.nbd.2004.10.007

26. Macchi B., Marino-Merlo F., Nocentini U., Pisani V. et al. Role of inflammation and apoptosis in multiple sclerosis: comparative analysis between the periphery and the central nervous system. J. Neuroimmunol. 2015; 287: 80-7. doi: 10.1016/j.jneuroim.2015.08.016. URL: https://pubmed.ncbi.nlm.nih.gov/26439966-role-of-inflammation-and-apoptosis-in-multiple-sclerosis-comparative-analysis-between-the-periphery-and-the-central-nervous-system/

doi: 10.1016/j.jneuroim.2015.08.016

27. Sharief M.K., Semra Y.K. Upregulation of the inhibitor of apoptosis proteins in activated T lymphocytes from patients with multiple sclerosis. J. Neuroimmunol. 2001; 119: 350-7. doi: 10.1016/ S0165-5728(01)00365-4. URL: https://pubmed.ncbi.nlm.nih.gov/11585639-upregulation-of-the-inhibitor-of-apoptosis-proteins-in-activated-t-lymphocytes-from-patients-with-multiple-sclerosis/

doi: 10.1016/S0165-5728(01)00365-4

28. Hebb A.L., Moore C.S., Bhan V, Campbell T. et al. Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination. Mult. Scler. 2008; 14: 577-94. doi: 10.1177/1352458507087468.

29. Schutyser E., Struyf S., Van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003; 14: 409-26.

30. Mony J.T., Khorooshi R., Owens T. Chemokine receptor expression by inflammatory T cells in EAE. Front Cell Neurosci. 2014; 8: 187. doi: 10.3389/fncel.2014.00187. URL: https://pubmed.ncbi.nlm.nih.gov/25071447-chemokine-receptor-expression-by-inflammatory-t-cells-in-eae/

doi: 10.3389/fncel.2014.00187

31. Jafarzadeh A., Bagherzadeh S., Ebrahimi H.A., Hajghani H. et al. Higher circulating levels of chemokine CCL20 in patients with multiple sclerosis: evaluation of the influences of chemokine gene polymorphism, gender, treatment and disease pattern. J. Mol. Neurosci. 2014; 53: 500-5. doi: 10.1007/s12031-013-0214-2. URL: https://pubmed.ncbi.nlm.nih.gov/24395091-higher-circulating-levels-of-chemokine-ccl20-in-patients-with-multiple-sclerosis-evaluation-of-the-influences-of-chemokine-gene-polymorphism-gender-treatment-and-disease-pattern/

doi: 10.1007/s12031-013-0214-2

32. Russo R.C., Garcia C.C., Teixeira M.M., Amaral F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 2014; 10 (5): 593-619. doi: 10.1586/1744666X.2014.894886.

URL: https://pubmed.ncbi.nlm.nih.gov/24678812-the-cxcl8il-8-chemokine-family-and-its-receptors-in-inflammatory-diseases/

doi: 10.1586/1744666X.2014.894886

33. Lund B.T., Ashikian N., Ta H.Q., Chakryan Y. et al. Increased CXCL8 (IL-8) expression in multiple sclerosis. J. Neuroimmunol. 2004; 155 (1-2): 161-71. doi: 10.1016/j.jneuroim.2004.06.008. URL: https://pubmed.ncbi.nlm.nih.gov/15342208-increased-cxcl8-il-8-expression-in-multiple-sclerosis/

doi: 10.1016/j.jneuroim.2004.06.008

34. Carlson T., Kroenke M., Rao P., Lane T.E. et al. The Th17-ELR1CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J. Exp. Med. 2008; 205: 811-23. doi: 10.1084/jem.20072404.

URL: https://pubmed.ncbi.nlm.nih.gov/18347102-the-th17-elr-cxc-chemokine-pathway-is-essential-for-the-development-of-central-nervous-system-autoimmune-disease/

doi: 10.1084/jem.20072404

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»