Comparison of transcriptional profiles of human macrophages activated by agonists of NOD1 and TLR4 receptors

Abstract

Introduction. Pattern-recognition receptor agonists are used to design immunostimulants and adjuvants that activate innate immunity to enforce desired protective effects. The choice of agonists most suitable in particular clinical situations should depend on knowledge of mechanisms of action of particular substances. To this end, detailed information about biological effects of particular agonists on immune cells is required.

Aim – to compare transcriptomes of human macrophages activated by NOD1 and TLR4 receptor agonists in vitro.

Material and methods. Macrophages were obtained by culturing healthy donor blood monocytes with granulocyte-macrophage colony-stimulating factor and stimulated by agonists of NOD1 or TLR4 for 1, 4 and 9 h. Transcriptomes were evaluated using next-generation RNA sequencing (RNA-seq) and real-time PCR (RT-PCR), followed by gene-set enrichment analysis and transcription factor binding sites analysis.

Results. Main difference between transcriptomes of macrophages activated through TLR4 and NOD1 was a stronger type I interferon response induced by the TLR4 agonist. NOD1 agonist activated several defense mechanisms in macrophages, including elevated expression of genes coding for antimicrobial proteins (aconitate decarboxylase 1, antimicrobial chemokines), inflammatory mediators and proteins required for Th17-differentiation.

Conclusion. Transcriptomic data allow recommendation of NOD1 agonists for prevention or treatment of infections caused by extracellular bacteria and fungi.

Keywords:macrophages; transcriptome; RNA sequencing; NOD1; TLR4; immunostimulators

For citation: Masyutina A.M., Murugina N.E., Pashchenkova Yu.G., Pashenkov M.V. Comparison of transcriptional profiles of human macrophages activated by agonists of NOD1 and TLR4 receptors. Immunologiya. 2023; 44 (1): 16–27. DOI: https://doi.org/10.33029/0206-4952-2023-44-1-16-27 (in Russian)

Funding. The work was supported by the Russian Science Foundation grant No. 21-15-00211.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Conducting experiments and analysing results – Masyutina A.M., Murugina N.E., Pashchenkova Yu.G.; design and conducting experiments, analysing results and writing the article – Pashenkov M.V.

References

1. Tukhvatulin A., Dzharullaeva A.S., Tukhvatulina N.M., Shcheblyakov D.V., Shmarov M.M., Dolzhikova I.V., et al. Powerful complex immunoadjuvant based on synergistic effect of combined TLR4 and NOD2 activation significantly enhances magnitude of humoral and cellular adaptive immune responses. PLoS One. 2016; 11 (5): e0155650. DOI: https://doi.org/10.1371/journal.pone.0155650

2. Tukhvatulin A.I., Gitlin I.I., Shcheblyakov D.V., Artemicheva N.M., Burdely L.G., Shmarov M.M., et al. Combined stimulation of Toll-like receptor 5 and Nod1 strongly potentiates activity of NF-κB, resulting in enhanced innate immune reactions and resistance to Salmonella enterica serovar typhimurium infection. Infect. Immun. 2013; 81 (10): 3855-64. DOI: https://doi.org/10.1128/IAI.00525-13

3. Pashenkov M., Goëss G., Wagner C., Hörmann M., Jandl T., Moser A., et al. Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J. Clin. Oncol. 2006; 24 (36): 5716-24. DOI: https://doi.org/10.1200/JCO.2006.07.9129

4. Pashenkov M.V., Dagil Y.A., Pinegin B.V. NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. Int. Immunopharmacol. 2018; 54: 385-400. DOI: https://doi.org/10.1016/j.intimp.2017.11.036

5. Napolitani G., Rinaldi A., Bertoni F., Sallusto F., Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1 -polarizing program in dendritic cells. Nat. Immunol. 2005; 6 (8): 769-76. DOI: https://doi.org/10.1038/ni1223

6. Ramirez-Carrozzi V.R., Braas D., Bhatt D.M., Cheng C.S., Hong C., Doty K.R., et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell. 2009; 138 (1): 114-28. DOI: https://doi.org/10.1016/j.cell.2009.04.020

7. Bhatt D.M., Pandya-Jones A., Tong A.J., Barozzi I., Lissner M.M., Natoli G., et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell. 2012; 150 (2): 279-90. DOI: https://doi.org/10.1016/j.cell.2012.05.043

8. Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017; 14 (4): 417-9. DOI: https://doi.org/10.1038/nmeth.4197

9. Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA. 2005; 102 (43): 15 545-50. DOI: https://doi.org/10.1073/pnas.0506580102

10. Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995; 57 (1): 289-300. DOI: https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

11. Budikhina A.S., Murugina N.E., Maximchik P.V., Dagil Y.A., Nikolaeva A.M., Balyasova L.S., et al. Interplay between NOD1 and TLR4 receptors in macrophages: nonsynergistic activation of signaling pathways results in synergistic induction of proinflammatory gene expression. J. Immunol. 2021; 206 (9): 2206-20. DOI: https://doi.org/10.4049/jimmunol.2000692

12. Gearing L.J., Cumming H.E., Chapman R., Finkel A.M., Woodhouse I.B., Luu K., et al. CiIIder: A tool for predicting and analysing transcription factor binding sites. PLoS One. 2019; 14 (9): e0215495. DOI: https://doi.org/10.1371/journal.pone.0215495

13. Yung S.C., Murphy P.M. Antimicrobial chemokines. Front. Immunol. 2012; 3: 276. DOI: https://doi.org/10.3389/fimmu.2012.00276

14. Michelucci A., Cordes T., Ghelfi J., Pailot A., Reiling N., Goldmann O., et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA. 2013; 110 (19): 7820-5. DOI: https://doi.org/10.1073/pnas.1218599110

15. Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003; 301 (5633): 640-3. DOI: https://doi.org/10.1126/science.1087262

16. Sheikh F., Dickensheets H., Gamero A.M., Vogel S.N., Donnelly R.P. An essential role for IFN-β in the induction of IFN-stimulated gene expression by LPS in macrophages. J. Leukoc. Biol. 2014; 96 (4): 591-600. DOI: https://doi.org/10.1189/jlb.2A0414-191R

17. Watanabe T., Asano N., Fichtner-Feigl S., Gorelick P.L., Tsuji Y., Matsumoto Y., et al. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J. Clin. Invest. 2010; 120 (5): 1645-62. DOI: https://doi.org/10.1172/jci39481

18. Pandey A.K., Yang Y., Jiang Z., Fortune S.M., Coulombe F., Behr M.A., et al. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog. 2009; 5 (7): e1000500. DOI: https://doi.org/10.1371/journal.ppat.1000500

19. Fan Y.H., Roy S., Mukhopadhyay R., Kapoor A., Duggal P., Wojcik G.L., et al. Role of nucleotide-binding oligomerization domain 1 (NOD1) and its variants in human cytomegalovirus control in vitro and in vivo. Proc. Natl Acad. Sci. USA. 2016; 113 (48): E7818-27. DOI: https://doi.org/10.1073/pnas.1611711113

20. Stockinger S., Reutterer B., Schaljo B., Schellack C., Brunner S., Materna T., et al. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. J. Immunol. 2004; 173 (12): 7416-25. DOI: https://doi.org/10.4049/jimmunol.173.12.7416

21. Werts C., le Bourhis L., Liu J., Magalhaes J.G., Carneiro L.A., Fritz J.H., et al. Nod1 and Nod2 induce CCL5/RANTES through the NF-kappaB pathway. Eur. J. Immunol. 2007; 37 (9): 2499-508. DOI: https://doi.org/10.1002/eji.200737069

22. Kapoor A., Fan Y.H., Arav-Boger R. Bacterial Muramyl Dipeptide (MDP) restricts human cytomegalovirus replication via an IFN-β-dependent pathway. Sci. Rep. 2016; 6: 20295. DOI: https://doi.org/10.1038/srep20295

23. Coulombe F., Fiola S., Akira S., Cormier Y., Gosselin J. Muramyl dipeptide induces NOD2-dependent Ly6C(high) monocyte recruitment to the lungs and protects against influenza virus infection. PLoS One. 2012; 7 (5): e36734. DOI: https://doi.org/10.1371/journal.pone.0036734

24. Pei G., Zyla J., He L., Moura-Alves P., Steinle H., Saikali P., et al. Cellular stress promotes NOD1/2-dependent inflammation via the endogenous metabolite sphingosine-1-phosphate. EMBO J. 2021; 40 (13): e106272. DOI: https://doi.org/10.15252/embj.2020106272

25. Crow M.K. Type I interferon in the pathogenesis of lupus. J. Immunol. 2014; 192 (12): 5459. DOI: https://doi.org/10.4049/jimmunol.1002795

26. Afshar M., Martinez A.D., Gallo R.L., Hata T.R. Induction and exacerbation of psoriasis with Interferon-alpha therapy for hepatitis C: A review and analysis of 36 cases. J. Eur. Acad. Dermatol. Venereol. 2013; 27 (6): 771. DOI: https://doi.org/10.1111/j.1468-3083.2012.04582.x

27. Nestle F.O., Conrad C., Tun-Kyi A., Homey B., Gombert M., Boyman O., et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 2005; 202 (1): 135-143. DOI: https://doi.org/10.1084/jem.20050500

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»