Humoral immune response to linear and conformational epitopes of SARS-CoV-2 in patients with COVID-19

AbstractIntroduction. Coronavirus disease 2019 (COVID-19) is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread all over the world and changed our daily lives. Although SARS-CoV-2 does not have a high lethality compared to other viruses such as virus of atypical pneumonia or Ebola virus, it has nevertheless led to the development of a pandemic and a very high numbers of deaths from the infection in the last 20 years. Antibodies against structural proteins, primarily to the spike protein of the SARS-CoV-2, play a main role in the elimination of the virus from the body.

Aim – analysis of the humoral immune response of patients with COVID-19 at the level of IgG antibodies to linear and conformational epitopes of the main structural proteins of the SARS-CoV-2 –nucleocapsid (N) and spike (S) proteins.

Material and methods. Using Western blot and enzyme immunoassay, IgG binding from the sera of 153 patients diagnosed with COVID-19 and conducted a correlation analysis with demographic and clinical indicators.

Results. Direct correlations were found between the values of the coefficient of positivity (CP) of antibodies to the N protein and RBD and the age of the patient, the patient’s need for oxygen and arterial hypertension. We have shown that the greater the CP value of IgG antibodies to the RBD domain of the S protein the faster the recovery occurs, which confirms the role of the RBD domain as a target for the protective immune response.

Conclusion. The study showed that in order to understand the course of the COVID-19 disease, predict the development of a prolonged form in a patient, and possible complications, such as switching to artificial lung ventilation, it is necessary not only to qualitatively but also quantitatively analyze the values of the CP of IgG antibodies to conformational and linear epitopes of the N and S proteins of the SARS-CoV-2.

Keywords:COVID-19; SARS-CoV-2; diagnostics; antibodies; immunoglobulins

For citation: Shokina V.A., Matyushkina D.M., Krivonos D.V., Manuvera V.A., Shirokov D.A., Kharlampieva D.D., Lazarev V.N., Pavlenko A.V., Ilina E.N., Rumyantsev A.G., Rumyantsev S.A., Ivanov K.P., Khromova P.A., Baklaushev V.P., Koritsky A.V., Kuropatkin V.A., Moskaleva E.V., Ogarkov O.B., Orlova E.A., Petrova A.G., Pozhenko N.S., Pushkar D.Yu., Kolontarev K.B., Kolyshkina N.A., Rychkova L.V., Samoilov A.S., Sinkov V.V., Solovieva S.V., Troitsky A.V., Udalov Yu.D., Yusubalieva G.M., Govorun V.M. Humoral immune response to linear and conformational epitopes of SARS-CoV-2 in patients with COVID-19. Immunologiya. 2023; 44 (1): 38–52. DOI: https://doi.org/10.33029/0206-4952-2023-44-1-38-52 (in Russian)

Funding. The study was supported by the State task No. 122030900051-9 of the Rospotrebnadzor «Creation of an industry platform foтаблr assessing the protectiveness of antigens and potential vaccine preparations».

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The concept and design of the study – Govorun V.M., Matyushkina D.S.; performing experiments – Shokina V.A., Manuvera V.A., Shirokov D.A., Kharlampieva D.D., Lazarev V.N.; collection of biological samples – Pavlenko A.V., Ilyina E.N., Rumyantsev A.G., Rumyantsev S.A., Ivanov K.P., Khromova P.A., Baklaushev V.P., Koritsky A.V., Kuropatkin V.A., Moskaleva E.V., Ogarkov O.B., Orlova E.A., Petrova A.G., Pozhenko N.S., Pushkar D.Yu., Kolontarev K.B., Kolyshkina N.A., Rychkova L.V., Samoilov A.S., Sinkov V.V., Solovieva S.V., Troitsky A.V., Udalov Yu.D., Yusubalieva G.M.; statistical processing – Krivonos D.V.; draft writing, editing – Shokina V.A., Matyushkina D.S.; the final version and the integrity of the text – Matyushkina D.S.



References

1. Wilder-Smith A. COVID-19 in comparison with other emerging viral diseases: risk of geographic spread via travel. Trop Dis Travel Med Vaccines. 2021; 7 (3): 1–11. DOI: https://www.doi.org/10.1186/s40794-020-00129-9

2. Zhao Y., Yang C., An X., Xiong Y., Shang Y., He J., Qiu Y., Zhang N., Huang L., Jia J., Xu Q., Zhang L., Zhao J., Pei G., Luo H., Wang J., Li Q., Gao Y., Xu A. Follow-up study on COVID-19 survivors one year after discharge from hospital. Int J Infect Dis. 2021; 112: 173–82. DOI: https://www.doi.org/10.1016/j.ijid.2021.09.017

3. Çil B., Kabak M. Persistent Post-COVID Symptoms and the Related Factors. Turk Thorac J. 2022; 23 (1): 6–10. DOI: https://www.doi.org/10.5152/TurkThoracJ.2022.21112

4. Османов И.М., Хегай И.М., Трунина И.И., Чеботарева Т.А., Чебуркин А.А., Шумилов П.В. Иммунопатогенез мультисистемного воспалительного синдрома, связанного с COVID-19, у детей. Иммунология. 2022; 43 (1): 217–23. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-1-217-223

5. Bayram Y.E., Yildiz-Sevgi D., Yavuz A., Cancetin M., Yavuz Gurler M. Management skin manifestation of multisystem inflammatory syndrome associated with SARS-CoV-2. Virology J. 2022; 19 (1): 1–9. DOI: 10.1186/s12985-021-01736-4

6. Сизякина Л.П., Закурская В.Я., Скрипкина Н.А., Антонова Е.А. Уровень ферритина как предиктор тяжелого течения COVID-19. Иммунология. 2021; 42 (5): 518–25. DOI: https://www.doi.org/10.33029/0206-4952-2021-42-4-518-525

7. Su S., Wong G., Shi W., Liu J., Lai A., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016; 24 (6): 490–502. DOI: 10.1016/j.tim.2016.03.003

8. Бруякин С.Д., Макаревич Д.А. Структурные белки коронавируса SARS-CoV-2: роль, иммуногенность, суперантигенные свойства и возможности использования для терапевтических целей. Вестник ВолгГМУ. 2021; 2 (78): 18–27. DOI: https://www.doi.org/10.19163/1994-9480-2021-2(78)-18-27

9. Takahashi M., Ai T., Sinozuka K., Baba Y., Igawa G., Nojiri S., Yamamoto T., Yuri M., Takei S., Saito K., Horiuchi Y., Kanno T., Tobiume M., Khasawneh A., Paran F., Hiki M., Wakita M., Miida T., Suzuki T., Okuzawa A., Takahashi K., Naito T., Tabe Y. Activation of SARS-CoV-2 neutralizing antibody is slower than elevation of spike-specific IgG, IgM, and nucleocapsid-specific IgG antibodies. Scientific Reports. 2022; 12 (1): 1–10. DOI: https://www.doi.org/10.1038/s41598-022-19073-z

10. Piccoli L., Park Y.J., Tortorici M.A., Czudnochowski N., Walls A.C., Beltramello M., Silacci-Fregni C., Pinto D., Rosen L.E., Bowen J.E., Acton O.J., Jaconi S., Guarino B., Minola A., Zatta F., Sprugasci N., Bassi J., Peter A., De Marco A., Nix J.C., Mele F., Jovic S., Rodriguez B.F., Gupta S.V., Jin F., Piumatti G., Lo Presti G., Pellanda A.F., Biggiogero M., Tarkowski M., Pizzuto M.S., Cameroni E., Havenar-Daughton C., Smithey M., Hong D., Lepori V., Albanese E., Ceschi A., Bernasconi E., Elzi L., Ferrari P., Garzoni C., Riva A., Snell G., Sallusto F., Fink K., Virgin H.W., Lanzavecchia A., Corti D., Veesler D. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020; 183 (4): 1024–42. DOI: https://www.doi.org/10.1016/j.cell.2020.09.037

11. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., McGregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Kain A., Miorin L., Moreno E., Naing Z. Z., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.P., Perica T., Bharath Pilla K., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O’Neal M. C, Cai Y., Chang J.C., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., KuzuogluOzturk D., Wang H., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R. M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., Zastrow M., Verdin E., Ashworth A., Schwartz O., Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A., Shokat K.M., Shoichet B.K., Krogan N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583 (7816): 459–68. DOI: https://www.doi.org/10.1038/s41586-020-2286-9

12. Zhang H., Wu Y., He Y., Liu X., Liu M., Tang Y., Li X., Yang G., Liang G., Xu S., Wang M., Wang W. Age-related risk factors and complications of patients with COVID-1 https://www.doi.org/9: a population-based retrospective study. Front Med. 2022; (8): 1–12. DOI: https://www.doi.org/10.3389/fmed.2021.757459

13. Андреев А.И., Андреев И.В., Нечай К.О., Есаулова Д.Р., Баклакова О.С., Вечорко В.И., Шиловский И.П., Кофиади И.А., Гудима Г.О., Мартынов А.И., Смирнов В.В., Кудлай Д.А., Хаитов М.Р. Взаимосвязь между возрастом и напряженностью поствакцинального гуморального иммунного ответа у лиц, ранее переболевших COVID-19. Иммунология. 2022; 43 (5): 583–92. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-5-583-592

14. Nakayama T., Lee I.T., Jiang S., Matter M.S., Yan C.H., Overdevest J.B., Wu C.T., Goltsev Y., Shih L.C., Liao C.K., Zhu B., Bai Y., Lidsky P., Xiao Y., Zarabanda D., Yang A., Easwaran M., Schürch C.M., Chu P., Chen H., Stalder A.K., McIlwain D.R., Borchard N.A., Gall P.A., Dholakia S.S., Le W., Xu L., Tai C.J., Yeh T.H., Erickson-Direnzo E., Duran J.M., Mertz K.D., Hwang P.H., Haslbauer J.D., Jackson P.K., Menter T., Andino R., Canoll P.D., DeConde A.S., Patel Z.M., Tzankov A., Nolan G.P., Nayak J.V. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med. 2021; 2 (10): 1–21. DOI: https://www.doi.org/10.1016/j.xcrm.2021.100421

15. Paleiron N., Mayet A., Marbac V., Perisse A., Barazzutti H., Brocq F.X., Janvier F., Dautzenberg B., Bylicki O. Impact of tobacco smoking on the risk of COVID-19: a large-scale retrospective cohort study. Nicotine Tob Res. 2021; 23 (8): 1398–404. DOI: https://www.doi.org/10.1093/ntr/ntab004

16. Kamyshnyi A., Krynytska I., Matskevych V., Marushchak M., Lushchak O. Arterial hypertension as a risk comorbidity associated with COVID-19 pathology. Int J Hypertens. 2020; 1–7. DOI: https://www.doi.org/10.1155/2020/8019360

References

1. Wilder-Smith A. COVID-19 in comparison with other emerging viral diseases: risk of geographic spread via travel. Trop Dis Travel Med Vaccines. 2021; 7 (3): 1–11. DOI: https://www.doi.org/10.1186/s40794-020-00129-9

2. Zhao Y., Yang C., An X., Xiong Y., Shang Y., He J., Qiu Y., Zhang N., Huang L., Jia J., Xu Q., Zhang L., Zhao J., Pei G., Luo H., Wang J., Li Q., Gao Y., Xu A. Follow-up study on COVID-19 survivors one year after discharge from hospital. Int J Infect Dis. 2021; 112: 173–82. DOI: https://www.doi.org/10.1016/j.ijid.2021.09.017

3. Çil B., Kabak M. Persistent Post-COVID Symptoms and the Related Factors. Turk Thorac J. 2022; 23 (1): 6–10. DOI: https://www.doi.org/10.5152/TurkThoracJ.2022.21112

4. Osmanov I.M., Khegay I.M., Trunina I.I., Chebotareva T.A., Cheburkin A.A., Shumilov P.V. Immunopathogenesis of multisystem inflammatory syndrome associated with COVID-19 in children. Immunology. 2022; 43 (1): 217–23. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-1-217-223 (in Russian)

5. Bayram Y.E., Yildiz-Sevgi D., Yavuz A., Cancetin M., Yavuz Gurler M. Management skin manifestation of multisystem inflammatory syndrome associated with SARS-CoV-2. Virology J. 2022; 19 (1): 1–9. DOI: https://www.doi.org/10.1186/s12985-021-01736-4

6. Sizyakina L.P., Zakurskaya V.Y., Skripkina N.A., Antonova E.A. Ferritin level as a predictor of COVID-19 severe course. Immunologiya. 2021; 42 (5): 518–25. DOI: https://www.doi.org/10.33029/0206-4952-2021-42-4-518-525 (in Russian)

7. Su S., Wong G., Shi W., Liu J., Lai A., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016; 24 (6): 490–502. DOI: https://www.doi.org/10.1016/j.tim.2016.03.003

8. Bruyakin S.D., Makarevich D.A. Structural proteins of the SARS-CoV-2 coronavirus: role, immunogenicity, superantigenic properties and potential use for therapeutic purposes. Vestnik VolgGMU. 2021; 2 (78): 18–27. DOI: https://www.doi.org/10.19163/1994-9480-2021-2(78)-18-27 (in Russian)

9. Takahashi M., Ai T., Sinozuka K., Baba Y., Igawa G., Nojiri S., Yamamoto T., Yuri M., Takei S., Saito K., Horiuchi Y., Kanno T., Tobiume M., Khasawneh A., Paran F., Hiki M., Wakita M., Miida T., Suzuki T., Okuzawa A., Takahashi K., Naito T., Tabe Y. Activation of SARS-CoV-2 neutralizing antibody is slower than elevation of spike-specific IgG, IgM, and nucleocapsid-specific IgG antibodies. Scientific Reports. 2022; 12 (1): 1–10. DOI: https://www.doi.org/10.1038/s41598-022-19073-z

10. Piccoli L., Park Y.J., Tortorici M.A., Czudnochowski N., Walls A.C., Beltramello M., Silacci-Fregni C., Pinto D., Rosen L.E., Bowen J.E., Acton O.J., Jaconi S., Guarino B., Minola A., Zatta F., Sprugasci N., Bassi J., Peter A., De Marco A., Nix J.C., Mele F., Jovic S., Rodriguez B.F., Gupta S.V., Jin F., Piumatti G., Lo Presti G., Pellanda A.F., Biggiogero M., Tarkowski M., Pizzuto M.S., Cameroni E., Havenar-Daughton C., Smithey M., Hong D., Lepori V., Albanese E., Ceschi A., Bernasconi E., Elzi L., Ferrari P., Garzoni C., Riva A., Snell G., Sallusto F., Fink K., Virgin H.W., Lanzavecchia A., Corti D., Veesler D. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020; 183 (4): 1024–42. DOI: https://www.doi.org/10.1016/j.cell.2020.09.037

11. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., McGregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Kain A., Miorin L., Moreno E., Naing Z.Z., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.P., Perica T., Bharath Pilla K., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O’Neal M.C, Cai Y., Chang J.C., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., Kuzuoglu-Ozturk D., Wang H., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R.M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., Zastrow M., Verdin E., Ashworthworth, A., Schwartz O., Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A., Shokat K.M., Shoichet B.K., Krogan N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583 (7816): 459–68. DOI: https://www.doi.org/10.1038/s41586-020-2286-9

12. Zhang H., Wu Y., He Y., Liu X., Liu M., Tang Y., Li X., Yang G., Liang G., Xu S., Wang M., Wang W. Age-related risk factors and complications of patients with COVID-19: a population-based retrospective study. Front Med. 2022; (8): 1–12. DOI: https://www.doi.org/10.3389/fmed.2021.757459

13. Andreev A.I., Andreev I.V., Nechay K.O., Esaulova D.R., Baklakova O.S., Vechorko V.I., Shilovskiy I.P., Kofiadi I.A, Gudima G.O., Martynov A.I., Smirnov V.V., Kudlay D.A., Khaitov M.R. Сorrelation between age and the intensity of the post-vaccination humoral immune response in individuals passed COVID-19. Immunologiya. 2022; 43 (5): 583–92. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-583-592 (in Russian)

14. Nakayama T., Lee I.T., Jiang S., Matter M.S., Yan C.H., Overdevest J.B., Wu C.T., Goltsev Y., Shih L.C., Liao C.K., Zhu B., Bai Y., Lidsky P., Xiao Y., Zarabanda D., Yang A., Easwaran M., Schürch C.M., Chu P., Chen H., Stalder A.K., McIlwain D.R., Borchard N.A., Gall P.A., Dholakia S.S., Le W., Xu L., Tai C.J., Yeh T.H., Erickson-Direnzo E., Duran J.M., Mertz K.D., Hwang P.H., Haslbauer J.D., Jackson P.K., Menter T., Andino R., Canoll P.D., DeConde A.S., Patel Z.M., Tzankov A., Nolan G.P., Nayak J.V. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med. 2021; 2 (10): 1–21. DOI: https://www.doi.org/10.1016/j.xcrm.2021.100421

15. Paleiron N., Mayet A., Marbac V., Perisse A., Barazzutti H., Brocq F.X., Janvier F., Dautzenberg B., Bylicki O. Impact of tobacco smoking on the risk of COVID-19: a large-scale retrospective cohort study. Nicotine Tob Res. 2021; 23 (8): 1398–404. DOI: https://www.doi.org/10.1093/ntr/ntab004

16. Kamyshnyi A., Krynytska I., Matskevych V., Marushchak M., Lushchak O. Arterial hypertension as a risk comorbidity associated with COVID-19 pathology. Int J Hypertens. 2020; 1–7. DOI: https://www.doi.org/10.1155/2020/8019360

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»