Changes in the expression of genes encoding ACE2 and innate immunity molecules (TLR7, IFN-α, IL-1β, TNF) in elderly patients with COVID-19

Abstract

Introduction. The SARS-CoV-2 infection has placed a significant weight on the healthcare systems around the world. In this regard, the study of possible predictors of an unfavorable course and outcome of the disease, as well as the development of thrombotic complications, is an urgent and important task in the context of the ongoing circulation of SARS-CoV-2.

Aim. The aim of the work was to study the expression of genes encoding the ACE2, the innate immunity receptor TLR7, the cytokines IFN-α, IL-1β and TNF in peripheral blood leukocytes in elderly patients with COVID-19, as well as the association of the expression of these genes with the risk of thrombotic complications development, assessed by the level of D-dimer.

Material and methods. The study included 50 elderly patients (65–77 years old) with a confirmed diagnosis of COVID-19, the comparison group consisted of 15 persons (65–69 years old) without COVID-19. Gene expression was assessed by real-time PCR with reverse transcription in leukocytes obtained from peripheral blood.

Results. A significant decrease in ACE2 gene expression was shown in the main group compared to the group of healthy persons. Evaluation of innate immunity molecules showed an increase of the expression of the TLR7 and IFNA genes, as well as the TNF and IL1B genes, compared to the group of healthy persons. A special task of the study was to compare the tested parameters, taking into account procoagulant activity, assessed by the level of D-dimer.

The study showed that a high level of D-dimer (> 1 mg/l) in patients with COVID-19 is associated with a lower level of expression of the IFNA gene and an increase of the level of expression of pro-inflammatory cytokines genes TNF and IL1B compared with a subgroup with a low level of D-dimer (< 1 mg/l). In the subgroup with a low level of D-dimer, the expression of TNF and IL1B genes had no difference from the group of healthy persons.

Conclusion. An increase of the level of TLR7 gene expression combined with a decrease of IFNA expression in the group with a high level of D-dimer may indicate an imbalance in innate immunity factors. Elevated expression levels of the pro-inflammatory cytokines genes TNF and IL1B are associated with a high risk of thrombosis (as measured by D-dimer) and may be one of the markers of an unfavorable outcome of COVID-19.

Keywords:COVID-19; genes; ACE2; TLR7; innate immunity; proinflammatory cytokines; elderly patients

For citation: Grechenko V.V., Uvarova O.S., Gromova T.V., Artemyeva O.V., Gankovskaya L.V. Changes in the expression of genes encoding ACE2 and innate immunity molecules (TLR7, IFN-α, IL-1β, TNF) in elderly patients with COVID-19. Immunologiya. 2023; 44 (1): 72–82. DOI: https://doi.org/10.33029/0206-4952-2023-44-1-72-82 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The concept and design of the study – Gankovskaya L.V., collection and processing of the material – Uvarova O.S., statistical data processing – Grechenko V.V., writing the text – Grechenko V.V., Uvarova O.S., Gromova T. V., editing – Artemyeva O.V., Gankovskaya L.V., Grechenko V.V., approval of the final version of the article – Gankovskaya L.V., responsibility for the integrity of all parts of the article – Grechenko V.V.

References

1. Chen Y., Klein S.L., Garibaldi B.T., Li H., Wu C. et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021; 65: 101205. DOI: https://www.doi.org/10.1016/j.arr.2020.101205

2. Kuba K., Yamaguchi T., Penninger J.M. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19. Front Immunol. 2021; 12: 732690. DOI: https://www.doi.org/10.3389/fimmu.2021.732690

3. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M. et al. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000; 87: e1–e9. DOI: https://www.doi.org/10.1161/01.res.87.5.e1

4. Gu J., Gong E., Zhang B., Zheng J., Gao Z. et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005; 202: 415–24. DOI: https://www.doi.org/10.1084/jem.20050828

5. Chen N., Zhou M., Dong X., Qu J., Gong F. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395: 507–13. DOI: https://www.doi.org/10.1016/S0140-6736(20)30211-7

6. Salvi V., Nguyen H.O., Sozio F., Schioppa T., Gaudenzi C. et al. SARS-CoV-2-associated ssRNAs activate inflammation and immunity via TLR7/8. JCI Insight. 2021; 6 (18): e150542. DOI: https://www.doi.org/10.1172/jci.insight.150542

7. Li S.W., Wang C.Y., Jou Y.J., Huang S.H., Hsiao L.H. et al. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int J Mol Sci. 2016; 17 (5): 678. DOI: https://www.doi.org/10.3390/ijms17050678

8. Krämer B., Knoll R., Bonaguro L., ToVinh M., Raabe J. et al. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity. 2021; 54 (11): 2650–2669.e14. DOI: https://www.doi.org/10.1016/j.immuni.2021.09.002

9. Bastard P., Orlova E., Sozaeva L., Lévy R., James A. et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J Exp Med. 2021; 218 (7): e20210554. DOI: https://www.doi.org/10.1084/jem.20210554

10. Ramasamy S., Subbian S. Critical determinants of cytokine storm and type I interferon response in COVID-19 pathogenesis. Clin Microbiol Rev. 2021; 34 (3): e00299–20. DOI: https://www.doi.org/10.1128/CMR.00299-20

11. Guan W., Ni Z., Hu Y., Liang W. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020; 382: 1708–20. DOI: https://www.doi.org/10.1056/NEJMoa2002032

12. Huang C., Wang Y., Li X., Ren L., Zhao J. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet. 2020; 395 (10223): 497–506. DOI: https://www.doi.org/10.1016/S0140-6736(20)30183-5

13. Zhu J., Pang J., Ji P., Zhong Z., Li H. et al. Elevated interleukin-6 is associated with severity of COVID-19: A meta-analysis. J Med Virol. 2021; 93 (1): 35–7. DOI: https://www.doi.org/10.1002/jmv.26085

14. Lucas C., Wong P., Klein J., Castro T.B.R., Silva J. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020; 584 (7821): 463–9. DOI: https://www.doi.org/10.1038/s41586-020-2588-y

15. Del Valle D.M., Kim-Schulze S., Huang H.H., Beckmann N.D., Nirenberg S. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020; 26 (10): 1636–43. DOI: https://www.doi.org/10.1038/s41591-020-1051-9

16. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18: 1094–99. DOI: https://www.doi.org/10.1111/jth.14817

17. Hadid T., Kafri Z., Al-Katib A. Coagulation and anticoagulation in COVID-19. Blood Rev. 2021; 47: 100761. DOI: https://www.doi.org/10.1016/j.blre.2020.100761

18. Böyum A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. General sedimentation properties of white blood cells in a 1g gravity field. Scand J Clin Lab Invest Suppl. 1968; 97: 51–76.

26. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054–62. DOI: https://www.doi.org/10.1016/S0140-6736(20)30566-3

27. Liu Y., Yang Y., Zhang C., Huang F., Wang F. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63 (3): 364–74. DOI: https://www.doi.org/10.1007/s11427-020-1643-8

28. Morganstein T., Haidar Z., Trivlidis J., Azuelos I., Huang M.J. et al. Involvement of the ACE2/Ang-(1-7)/MasR Axis in Pulmonary Fibrosis: Implications for COVID-19. Int J Mol Sci. 2021; 22 (23): 12955. DOI: https://www.doi.org/10.3390/ijms222312955

29. Wang J., He W., Guo L., Zhang Y., Li H. et al. The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Mol Med Rep. 2017; 16 (2): 1973–81. DOI: https://www.doi.org/10.3892/mmr.2017.6848

30. Jia G., Aroor A.R., Jia C., Sowers J.R. Endothelial cell senescence in aging-related vascular dysfunction. Biochim. Biophys. Acta. Mol. Basis. Dis. 2019; 1865 (7): 1802–9. DOI: https://www.doi.org/10.1016/j.bbadis.2018.08.008

31. Bonafè M., Prattichizzo F., Giuliani A., Storci G., Sabbatinelli J., Olivieri F. Inflammaging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev. 2020; 53: 33–7. DOI: https://www.doi.org/10.1016/j.cytogfr.2020.04.005

32. Bártová E., Legartová S., Krejčí J., Arcidiacono O.A. Cell differentiation and aging accompanied by depletion of the ACE2 protein. Aging (Albany NY). 2020; 12 (22): 22495–508. DOI: https://www.doi.org/10.18632/aging.202221

33. Metcalf T.U., Wilkinson P.A., Cameron M.J., Ghneim K., Chiang C. et al. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol. 2017; 199 (4): 1405–17. DOI: https://www.doi.org/10.4049/jimmunol.1700148

34. Andreev A.I., Andreev I.V., Nechay K.O., Esaulova D.R., Baklakova O.S., Vechorko V.I., Shilovskiy I.P., Kofiadi I.A, Gudima G.O., Martynov A.I., Smirnov V.V., Kudlay D.A., Khaitov M.R. Сorrelation between age and the intensity of the post-vaccination humoral immune response in individuals passed COVID-19. Immunologiya. 2022; 43 (5): 583–92. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-583-592 (in Russian)

35. Andreev I.V., Nechay K.O., Andreev A.I., Zubaryova A.P., Esaulova D.R., Alenova A.M., Niko laeva I.A., Chernyavskaya O.P., Lomonosov K.S., Shulzhenko A.E., Kurbacheva O.M., Latysheva E.A., Sharta nova N.V., Nazarova E.V., Romanova L.V., Cherchenko N.G., Smirnov V.V., Averkov O.V., Martynov A.I., Vechorko V.I., Gudima G.O., Kudlay D.A., Khaitov M.R., Khaitov R.M. Post-vaccination and post-infection humoral immune response to the SARS-CoV-2 infection. Immunologiya. 2022; 43 (1): 18–32. DOI: https://doi.org/10.33029/0206-4952-2022-43-1-18-32 (in Russian)

36. Bandaranayake T., Shaw A.C. Host Resistance and Immune Aging. Clin Geriatr Med. 2016; 32 (3): 415–32. DOI: https://www.doi.org/10.1016/j.cger.2016.02.007

37. Dyavar S.R., Singh R., Emani R., Pawar G.P., Chaudhari V.D. et al. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV-2 infection and potential therapeutic options. Biomed Pharmacother. 2021; 141: 111794. DOI: https://www.doi.org/10.1016/j.biopha.2021.111794

38. Tripathy A.S., Vishwakarma S., Trimbake D., Gurav Y.K., Potdar V.A. et al. Pro-inflammatory CXCL-10, TNF-α, IL-1β, and IL-6: biomarkers of SARS-CoV-2 infection. Arch Virol. 2021; 166 (12): 3301–10. DOI: https://www.doi.org/10.1007/s00705-021-05247-z

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»