Prognostic significance of phenotypic changes of lymphocytes in hemorrhagic fever with renal syndrome

Abstract

Introduction. Hantaviruses are widespread in nature, affecting animals and forming natural reservoirs. In people living in natural foci, these viruses most often cause hemorrhagic fever with renal syndrome (HFRS) – a serious disease with vascular and kidney damage with the likelihood of death, which has medical and social significance.

Aims – immunopathogenic substantiation of the role of certain lymphocyte phenotypes in the development of severe HFRS and the development of criteria for predicting the severity of the course in the initial period of the disease.

Material and methods. 37 people were examined, among whom 24 people were diagnosed with HFRS (16 patients of moderate course and 8 patients of severe course). The remaining 15 people were clinically healthy and made up the comparison group. All persons in the first days of the disease were examined by flow cytometry of the blood сells with the determination of lymphocyte phenotypes in the innate and adaptive immunity.

Results. It was found that two types of immunological shifts, depending on the HFRS severity, were observed. In the severe course of the disease, there was a decrease in the ratio of T-helper/CTL (CD3+CD4+/CD3+CD8+), as well as an increase in the ratio of NKG2D+ CTL/CD8+ Treg (CD3+CD8+CD314+/CD3+CD8+FoxP3+). The ratio of NKG2D+ CTL/CD8+ Treg was more diagnostically significant and was called the cytotoxic-regulatory index (CRI). If the patients in HFRS had CRI > 2.4, it was recommended to be attributed them to the risk group for the development of a severe course of the disease.

Conclusion. The results create a scientific and clinically significant basis for predicting severe HFRS using the ratio of NKG2D+ CTL and CD8+ Treg that should be clarified further in a larger group of patients.

Keywords:hemorrhagic fever with renal syndrome; severity of the course; cytotoxic T-lymphocytes; regulatory T-cells; receptor NKG2D

For citation: Ivanov M.F., Balmasova I.P., Zhestkov A.V., Konstantinov D.Yu., Malova E.S. Prognostic significance of phenotypic changes of lymphocytes in hemorrhagic fever with renal syndrome. Immunology. 2023; 44 (2): 181–90. DOI: https://doi.org/10.33029/0206-4952-2023-44-2-181-190 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Concept and design of the study – Ivanov M.F., Balmasova I.P., Zhestkov A.V.; data collection and processing – Ivanov M.F., Konstantinov D.Yu.; statistical data processing – Ivanov M.F.; text writing – Ivanov M.F.; article editing – Balmasova I.P., Malova E.S.

References

1.Valishin D.A., Shestakova I.V., Murzabaeva R.T., Ivanis V.A., Suzdaltsev A.A., Fasilov V.H. Hemorrhagic fever with renal syndrome in adults. Clinical guidelines. Non-Profit Partnership «National Scientific Society of Infectious Disease Specialists», 2016. 49 p. (in Russian)

2.Tkachenko E.A., Ishmukhametov A.A., Dzagurova T.K., Bernshtein A.D., Morozov V.G., Siniugina A.A., Kurashova S.S., Balkina A.S., Tkachenko P.E., Kruger D.H., Klempa B. Hemorrhagic Fever with Renal Syndrome, Russia. Emerg Infect Dis. 2019; 25 (12): 2325–8. DOI: https://www.doi.org/10.3201/eid2512.181649

3.Khunafina D.Kh., Valishin D.A., Shaikhullina L.R., Galieva A.T. Hemorrhagic fever with renal syndrome. Literature review. International Journal of Experimental Education, 2014; (8): 14-17. (in Russian)

4.Guterres A., de Oliveira C.R., Fernandes J., de Lemos R.S.E. The mystery of the phylogeographic structural pattern in rodent-borne hantaviruses. Mol Phylogenet Evol. 2019; 136: 35–43. DOI: https://www.doi.org/10.1016/j.ympev.2019.03.020

5.Suzdaltsev A.A., Morozov V.G., Lukaev R.R., Tkachenko E.A. Hemorrhagic fever with renal syndrome (Puumala) in natural foci in the Middle Volga region: dynamics of clinical and laboratory manifestations in 1997–2012. Infectionnie bolezni: novosti, mneniya, obuchenie. 2014; 4 (9): 44–50. (in Russian)

6. Kruger D.H., Figueiredo L.T., Song J.W., Klempa B. Hantaviruses – globally emerging pathogens. J Clin Virol. 2015; 64: 128–136. DOI: https://www.doi.org/10.1016/j.jcv.2014.08.033

7. Mustonen J., Makela S., Outinen T., Laine O., Jylhava J., Arstila P.T., Hurme M., Vaheri A. The pathogenesis of nephropathia epidemica: new knowledge and unanswered questions. Antiviral Res. 2013; 100: 589–604. DOI: https://www.doi.org/10.1016/j.antiviral.2013.10.001

8. Latus J., Schwab M., Tacconelli E., Pieper F.M., Wegener D., Dippon J., Müller S., Zakim D., Segerer S., Kitterer D., Priwitzer M., Mezger B., Walter-Frank B., Corea A., Wiedenmann A., Brockmann S., Pöhlmann C., Alscher M.D., Braun N. Clinical course and long-term outcome of hantavirus-associated nephropathia epidemica, Germany. Emerg Infect Dis. 2015; 21 (1): 76–83. DOI: https://www.doi.org/10.3201/eid2101.140861

9. Manigold T., Vial P. Human hantavirus infections: epidemiology, clinical features, pathogenesis and immunology. Swiss Med Wkly. 2014; 144: 13937–55. DOI: https://www.doi.org/10.4414/smw.2014.13937

10. Wang P.Z., Li Z.D., Yu H.T., Zhang Y., Wang W., Jiang W., Bai X.F. Elevated serum concentrations of inflammatory cytokines and chemokines in patients with haemorrhagic fever with renal syndrome. J Int Med Res. 2012; 40 (2): 648–56. DOI: https://www.doi.org/10.1177/147323001204000227

11. Bjorkstrom N.K., Ljunggren H.-G., Michaelsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 2016; 16 (5): 310–20. DOI: https://www.doi.org/10.1038/nri.2016.34

12. Klingstrom J., Smed-Sorensen А., Maleki K.T., Sola-Riera C., Ahlm C., Björkström N.K., Ljunggren H.G. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med. 2019; 285 (5): 510–23. DOI: https://www.doi.org/10.1111/joim.12876

13. Ma Y., Yuan B., Zhuang R., Zhang Y., Liu B., Zhang C., Zhang Y., Yu H., Yi J., Yang A., Jin B. Hantaan virus infection induces both Th1 and ThGranzyme B+ cell immune responses associated with viral control and clinical outcome in humans. PLoS Pathol. 2015; 11 (4): e1004788. DOI: https://www.doi.org/10.1371/journal.ppat.1004788

14.Jiang H., Du H., Wang L.M., Wang P.Z., Bai X.F. Hemorrhagic fever with renal syndrome: Pathogenesis and clinical picture. Front Cell Infect Microbiol. 2016; 6: 1–14. DOI: https://www.doi.org/10.3389/fcimb.2016.00001

15. Koivula T.T., Tuulasvaara A., Hetemaki L., Makela S.M., Mustonen J., Sironen T., Vaheri A., Arstila T.P. Regulatory T cell response correlates with the severity of human hantavirus infection. J Infect. 2014; 68 (4): 387–94. DOI: https://www.doi.org/10.1016/j.jinf.2013.11.007

16. Wang M., Wang J., Zhu Y., Xu Z., Yang K., Yang A., Jin B. Cellular immune response to Hantaan virus nucleocapsid protein in the acute phase of hemorrhagic fever with renal syndrome: correlation with disease severity. J Infect Dis. 2009; 199 (2): 188–95. DOI: https://www.doi.org/10.1086/595834

17. Ivanov M.F., Balmasova I.P., Zhestkov A.V. Immunopathogenetic features and prognostic criteria for the severe course of hemorrhagic fever with renal syndrome. Vestnik RUDN. Series: Medicine, 2020; 3: 207–17. (in Russian)

18. Resman Rus K., Fajs L., Korva M., Avsic-Zupanc T. HMGB1 Is a Potential Biomarker for Severe Viral Hemorrhagic Fevers. PLoS Negl Trop Dis. 2016; 10 (6): e0004804. DOI: https://www.doi.org/10.1371/journal.pntd.0004804

19.Gareev I.F., Beylerli O.A., Pavlov V.N., Izmailov A.A., Khusnutdinova E.K., Khasanova G.M., Gilyazova I.R., Khasanova A.N., Guoqing Wang G.W., Honglan Huang H.H., Jiahui Pan J.P., Tong Shao T.S., Haochen Yao H.Y., Wenfang Wang W.W., Khasanov D.N. The potential role of mirnas in the pathogenesis of hemorrhagic fever with renal syndrome. Urologiia. 2021; (1): 112–9. DOI: https://dx.doi.org/10.18565/urology.2021.1.112-119. (in Russian)

20. Markotiс A., Dasiс G., Gagro A., Sabioncello A., Rabatic S., Kuzman I., Zgorelec R., Smoljan I., Beus I., Zupanc T.A., Dekaris D. Role of peripheral blood mononuclear cell (PBMC) phenotype changes in the pathogenesis of haemorrhagic fever with renal syndrome (HFRS). Clin Exp Immunol. 1999; 115 (2): 329–234. DOI: https://www.doi.org/10.1046/j.1365-2249.1999.00790.x

21. Outinen T.K., Makela S.M., Ala-Houhala I.O., Huhtala H.S., Hurme M., Paakkala A.S., Pörsti I.H., Syrjänen J.T., Mustonen J.T. The severity of Puumala hantavirus induced nephropathia epidemica can be better evaluated using plasma interleukin-6 than C-reactive protein determinations. BMC Infect Dis. 2010; 10: 132. DOI: https://www.doi.org/10.1186/1471-2334-10-132

22. Sadeghi M., Lahdou I., Ettinger J., Navid M.H., Daniel V., Zeier M., Hofmann J., Opelz G., Schnitzler P. Association of low serum TGF-β level in hantavirus infected patients with severe disease. BMC Immunol. 2015; 16: 19. DOI: https://www.doi.org/10.1186/s12865-015-0085-0

23. Andersson U., Wang H., Palmblad K., Aveberger A.C., Bloom O., Erlandsson-Harris H., Janson A., Kokkola R., Zhang M., Yang H., Tracey K.J. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000; 192 (4): 565–70. DOI: https://www.doi.org/10.1084/jem.192.4.565

24. Li X., Du N., Xu G., Zhang P., Dang R., Jiang Y., Zhang K. Expression of CD206 and CD163 on intermediate CD14++CD16+ monocytes are increased in hemorrhagic fever with renal syndrome and are correlated with disease severity. Virus Res. 2018; 253: 92–102. DOI: https://www.doi.org/10.1016/j.virusres.2018.05.021

25. Li J., Du H., Bai X.F., Wang X.Y., Zhang Y., Jiang H., Wang P.Z. Study on expression of plasma sCD138 in patients with hemorrhagic fever with renal syndrome. BMC Infect Dis. 2018; 18 (1): 100. DOI: https://www.doi.org/10.1186/s12879-018-3005-0

26. Liu B., Ma Y., Yi J., Xu Z., Zhang Y.S., Zhang C., Zhuang R., Yu H., Wang J., Yang A., Zhang Y., Jin B. Elevated plasma soluble Sema4D/CD100 levels are associated with disease severity in patients of hemorrhagic fever with renal syndrome. PLoS One. 2013; 8 (9): e73958. DOI: https://www.doi.org/10.1371/journal.pone.0073958

27. Liu B., Ma Y., Zhang Y., Zhang C., Yi J., Zhuang R., Yu H., Yang A., Zhang Y., Jin B. CD8low CD100 T cells identify a novel CD8 T cell subset associated with viral control during human Hantaan virus infection. J Virol. 2015; 89 (23): 11834-11844. DOI: 10.1128/JVI.01610-15.

28. Kumanogoh A., Suzuki K., Ch’ng E., Watanabe C., Marukawa S., Takegahara N., Ishida I., Sato T., Habu S., Yoshida K., Shi W., Kikutani H. Requirement for the lymphocyte semaphorin, CD100, in the induction of antigen-specific T cells and the maturation of dendritic cells. J Immunol. 2002; 169 (3): 1175–81. DOI: https://www.doi.org/10.4049/jimmunol.169.3.1175

29. Serebryakova M.K., Kudryavtsev I.V., Polevshchikov A.V. Cytometric assessment of lectin binding with different populations of mouse thymocytes. Immunologiya. 2019; 40 (6): 41–9. DOI: https://www.doi.org/10.24411/0206-4952-2019-16006 (in Russian)

30. Rouse B.T., Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol. 2010; 10 (7): 514–26. DOI: https://www.doi.org/10.1038/nri2802

31. Jiang H., Du H., Wang L.M., Wang P.Z., Bai X.F. Hemorrhagic fever with renal syndrome: Pathogenesis and clinical picture. Front Cell Infect Microbiol. 2016; 6: 1–14. DOI: https://www.doi.org/10.3389/fcimb.2016.00001

32. Lanier L.L. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015; 3 (6): 575–82. DOI: https://www.doi.org/10.1158/2326-6066.CIR-15-0098

33. Verneris M.R., Karami M., Baker J., Jayaswal A., Negrin R.S. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood. 2004; 103 (8): 3065–72. DOI: https://www.doi.org/10.1182/blood-2003-06-2125

34. Prajapati K., Perez C., Rojas L.B.P., Burke B., GuevaraPatino J.A. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy. Cell Mol Immunol. 2018; 15 (5): 470–9. DOI: https://www.doi.org/10.1038/cmi.2017.161

35. Liu Q., Zheng H., Chen X., Peng Y., Huang W., Li X., Li G., Xia W., Sun Q., Xiang A.P. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(−) regulatory T cells. Cell Mol Immunol. 2015; 12 (6): 708–18. DOI: https://www.doi.org/10.1038/cmi.2014.118

36. Kazansky D.B., Kalinina A. A., Zamkova M.A., Khromykh L.M., Persiantseva N. A. Phenomenon of chain-centricity of T-cell receptors – possibilities and problems of application in medicine. Immunologiya. 2020; 41 (5): 421–31. DOI: https://www.doi.org/10.33029/0206-4952-2020-41-5-421-431 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»