Immunopathogenesis and target therapy of Alzheimer’s disease

Abstract

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in the elderly worldwide. However the ambiguity of the development and causal factors of AD leads to a discrepancy in the understanding of the pathogenesis of the disease and may be one of the reason for the complexity of the development of drugs for AD. The review presents new data on the conduct of clinical trials treatment methods that affect the pathophysiological processes in AD. Targeted drugs aimed at neuroinflammation induced by NLRP3 inflammasome, monoclonal antibodies and drugs for active immunization against beta amyloid, tau protein are considered.

Keywords:Alzheimer’s disease; neurodegenerative diseases; neuroinflammation; immunotherapy; monoclonal antibodies

For citation: Nasaeva E.D., Khasanova E.M., Gankovskaya L.V. Immunopathogenesis and target therapy of Alzheimer’s disease. Immunologiya. 2023; 44 (2): 231–42. DOI: https://doi.org/10.33029/0206-4952-2023-44-2-231-242 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Concept – Gankovskaya L.V.; collection and processing of the material – Nasaeva E.D., Khasanova Е.M.; writing the text – Nasaeva E.D., Khasanova Е.M.; editing – Gankovskaya L.V.

References

1. Chang Y. J., Chen Y. R. The Coexistence of an equal amount of Alzheimer’s amyloid-β 40 and 42 forms structurally stable and toxic oligomers through a distinct pathway. FEBS J. 2014; 281 (11): 2674–87. DOI: https://www.doi.org/10.1111/FEBS.12813

2. Kayed R., Lasagna-Reeves C.A. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimer’s Dis. 2013; 33 (s1): S67–S78. DOI: https://www.doi.org/10.3233/JAD-2012-129001

3. Kokubo H., Kayed R., Glabe C.G., Yamaguchi H. Soluble Aβ oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer’s disease brain. Brain Res. 2005; 1031 (2): 222–8. DOI: https://www.doi.org/10.1016/J.BRAINRES.2004.10.041

4. Wilcox K.C., Lacor P.N., Pitt J., Klein W.L. Aβ oligomer-induced synapse degeneration in Alzheimer’s disease. Cell Mol Neurobiol. 2011; 31 (6): 939–48. DOI: https://www.doi.org/10.1007/S10571-011-9691-4

5. Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016; 8 (6): 595–608. DOI: https://www.doi.org/10.15252/EMMM.201606210

6. Hampel H., Hardy J., Blennow K., Chen C., Perry G., Kim S.H., Villemagne V.L., Aisen P., Vendruscolo M., Iwatsubo T., Masters C.L., Cho M., Lannfelt L., Cummings J.L., Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021; 26 (10): 5481–503. DOI: https://www.doi.org/10.1038/s41380-021-01249-0

7. Rozpedek W., Markiewicz L., Diehl J., Pytel D., Majsterek I. Unfolded protein response and PERK kinase as a new therapeutic target in the pathogenesis of Alzheimer’s disease. Curr Med Chem. 2015; 22 (27): 3169–84. DOI: https://www.doi.org/10.2174/0929867322666150818104254

8. O’Brien R.J., Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011; 34 185–204. DOI: https://www.doi.org/10.1146/ANNUREV-NEURO-061010-113613

9. Lane C.A., Hardy J., Schott J.M. Alzheimer’s disease. Eur J Neurol. 2018; 25 (1): 59–70. DOI: https://www.doi.org/10.1111/ENE.13439

10. Kakuda N., Miyasaka T., Iwasaki N., Nirasawa T., Wada-Kakuda S., Takahashi-Fujigasaki J., Murayama S., Ihara Y., Ikegawa M. Distinct deposition of amyloid-β species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun. 2017; 5 (1): 73. DOI: https://www.doi.org/10.1186/S40478-017-0477-X/FIGURES/3

11. Thal D.R., Walter J., Saido T.C., Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol. 2015; 129 (2): 167–82. DOI: https://www.doi.org/10.1007/S00401-014-1375-Y/TABLES/2

12. Rozpędek-Kamińska W., Siwecka N., Wawrzynkiewicz A., Wojtczak R., Pytel D., Diehl J. A., Majsterek I. The PERK-dependent molecular mechanisms as a novel therapeutic target for neurodegenerative diseases. Int J Mol Sci. 2020; 21 (6): 2108. DOI: https://www.doi.org/10.3390/IJMS21062108

13. Zhao J., Liu X., Xia W., Zhang Y., Wang C. Targeting amyloidogenic processing of APP in Alzheimer’s disease. Front Mol Neurosci. 2020; 13. DOI: https://www.doi.org/10.3389/FNMOL.2020.00137

14. Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D. J. Soluble amyloid β-protein dimers isolated from alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci. U.S.A. 2011; 108 (14): 5819–24. DOI: https://www.doi.org/10.1073/PNAS.1017033108/SUPPL_FILE/PNAS.201017033SI.PDF

15. Gulisano W., Maugeri D., Baltrons M.A., Fà M., Amato A., Palmeri A., D’Adamio L., Grassi C., Devanand D.P., Honig L.S., Puzzo D., Arancio O. Role of amyloid-β and tau proteins in Alzheimer’s disease: confuting the amyloid cascade. J Alzheimers Dis. 2018; 64 (Suppl 1): S611. DOI: https://www.doi.org/10.3233/JAD-179935

16. Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s dement. Transl Res Clin Interv. 2018; 4 (1): 575–90. DOI: https://www.doi.org/10.1016/J.TRCI.2018.06.0142

17. Lin T., Liu G.A., Perez E., Rainer R.D., Febo M., Cruz-Almeida Y., Ebner N.C. Systemic inflammation mediates age-related cognitive deficits. Front Aging Neurosci. 2018; 10 (AUG): 236. DOI: https://www.doi.org/10.3389/FNAGI.2018.00236/BIBTEX

18. Chen W.W., Zhang X., Huang W.J. Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep. 2016; 13 (4): 3391–6. DOI: https://www.doi.org/10.3892/MMR.2016.4948/HTML

19. Cantarella G., Di Benedetto G., Scollo M., Paterniti I., Cuzzocrea S., Bosco P., Nocentini G., Riccardi C., Bernardini R. Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice. Neuropsychopharmacology. 2010; 35 (6): 1302. DOI: https://www.doi.org/10.1038/NPP.2009.234

20. Cantarella G., Uberti D., Carsana T., Lombardo G., Bernardini R., Memo M. Neutralization of TRAIL death pathway protects human neuronal cell line from β-amyloid toxicity. Cell Death Differ. 2003; 10 (1): 134–41. DOI: https://www.doi.org/10.1038/sj.cdd.4401143

21. Cantarella G., Pignataro G., Di Benedetto G., Anzilotti S., Vinciguerra A., Cuomo O., Di Renzo G. F., Parenti C., Annunziato L., Bernardini R. Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype. Cell Death Dis. 2014; 5 (7): e1331. DOI: https://www.doi.org/10.1038/CDDIS.2014.286

22. Tang Y., Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2015; 53 (2): 1181–94. DOI: https://www.doi.org/10.1007/S12035-014-9070-5

23. Perry V.H., Nicoll J.A.R., Holmes C. Microglia in neurodegenerative Disease Nat Rev Neurol. 2010; 6 (4): 193–201. DOI: https://www.doi.org/10.1038/nrneurol.2010.17

24. Mitra S., Behbahani H., Eriksdotter M. Innovative therapy for Alzheimer’s disease-with focus on biodelivery of NGF. Front Neurosci. 2019; 13 (FEB): 38. DOI: https://www.doi.org/10.3389/FNINS.2019.00038/BIBTEX

25. Yasenyavskaya A. L., Tsybizova A. A., Andreeva L. A., Myasoedov N. F., Bashkina O. A., Samotrueva M. A. Effect of glyproline neuropeptides on the level of interleukins and neurotrophic factors under stress. Immunologiya 2022; 43 (2): 166–73. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-1-166-173 (in Russian)

26. Ising C., Venegas C., Zhang S., Scheiblich H., Schmidt S.V., Vieira-Saecker A., Schwartz S., Albasset S., McManus R. M., Tejera D., Griep A., Santarelli F., Brosseron F., Opitz S., Stunden J., Merten M., Kayed R., Golenbock D. T., Blum D., Latz E., Buée L., Heneka M.T. NLRP3 Inflammasome activation drives tau pathology. Nat. 2019; 575 (7784): 669–73. DOI: https://www.doi.org/10.1038/s41586-019-1769-z

27. Venegas C., Heneka M. T. Inflammasome-mediated innate immunity in Alzheimer’s disease. FASEB J. 2019; 33 (12): 13075–84. DOI: https://www.doi.org/10.1096/FJ.201900439

28. Huang N.Q., Jin H., Zhou S.Yu, Shi J.Sh., Jin F. TLR4 Is a link between diabetes and Alzheimer’s disease. Behav Brain Res. 2017; 316: 234–44. DOI: https://www.doi.org/10.1016/J.BBR.2016.08.047

29. Brosseron F., Krauthausen M., Kummer M., Heneka M.T. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. 2014; 50 (2): 534–44. DOI: https://www.doi.org/10.1007/S12035-014-8657-1/FIGURES/1

30. Artemyeva O.V., Grechenko V.V., Gromova T.V., Gankovskaya L.V. Frailty: a controversial role of inflammaging. Immunologiya. 2022; 43 (6): 746–56. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-6-746-756 (in Russian)

31. Artemyeva O.V., Gankovskaya L.V. Polymorphic variants of innate immunity genes in longevity and age-associated diseases. Immunologiya. 2022; 43 (3): 333–42. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-3-333-342 (in Russian)

32. Sita G., Graziosi A., Hrelia P., Morroni F. NLRP3 and infections: β-amyloid in inflammasome beyond neurodegeneration. Int J Mol Sci. 2021; 22 (13): DOI: https://www.doi.org/10.3390/IJMS22136984

33. Ismael S., Zhao L., Nasoohi S., Ishrat T. Inhibition of the NLRP3-шnflammasome as a potential approach for neuroprotection after stroke. Sci Reports. 2018; 8 (1): 1–9. DOI: https://www.doi.org/10.1038/s41598-018-24350-x

34. Corcoran S.E., Halai R., Cooper M.A. Pharmacological inhibition of the nod-like receptor family pyrin domain containing 3 inflammasome with MCC950. Pharmacol Rev. 2021; 73 (3): 968–1000. DOI: https://www.doi.org/10.1124/PHARMREV.120.000171

35. Dempsey C., Rubio Araiz A., Bryson K.J., Finucane O., Larkin C., Mills E.L., Robertson A.A.B., Cooper M.A., O’Neill L.A.J., Lynch M.A. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 Mice Brain Behav Immun. 2017; 61: 306–16. DOI: https://www.doi.org/10.1016/J.BBI.2016.12.014

36. Kuwar R., Rolfe A., Di L., Xu H., He L., Jiang Y., Zhang S., Sun D. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation. 2019; 16 (1): DOI: https://www.doi.org/10.1186/S12974-019-1471-Y

37. Yin J., Zhao F., Chojnacki J.E., Fulp J., Klein W.L., Zhang S., Zhu X. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2018; 55 (3): 1977–87. DOI: https://www.doi.org/10.1007/S12035-017-0467-9/FIGURES/8

38. Dong D., Ren A., Yang Y., Su J., Liu L., Zhuo W., Liang Y. VX-765 alleviates β-amyloid deposition and secondary degeneration in the ipsilateral hippocampus and ameliorates cognitive decline after focal cortical infarction in rats. J Mol Neurosci. 2022; 72 (12): 2389–97. DOI: https://www.doi.org/10.1007/S12031-022-02088-6/FIGURES/6

39. Marchetti C., Swartzwelter B., Gamboni F., Neff C.P., Richter K., Azam T., Carta S., Tengesdal I., Nemkov T., D’Alessandro A., Henry C., Jones G.S., Goodrich S.A., St. Laurent J.P., Jones T.M., Scribner C.L., Barrow R.B., Altman R.D., Skouras D.B., Gattorno M., Grau V., Janciauskiene S., Rubartelli A., Joosten L.A.B., Dinarello C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci. U.S.A. 2018; 115 (7): E1530–E1539. DOI: https://www.doi.org/10.1073/PNAS.1716095115/SUPPL_FILE/PNAS.1716095115.SAPP.PDF

40. Gilman S., Koller M., Black R.S., Jenkins L., Griffith S.G., Fox N.C., Eisner L., Kirby L., Boada Rovira M., Forette F., Orgogozo J.M. Clinical effects of Aβ Immunization (AN1792) in patients with AD in an interrupted Trial. Neurology. 2005; 64 (9): 1553–62. DOI: https://www.doi.org/10.1212/01.WNL.0000159740.16984.3C

41. Orgogozo J.M., Gilman S., Dartigues J.F., Laurent B., Puel M., Kirby L.C., Jouanny P., Dubois B., Eisner L., Flitman S., Michel B.F., BoadaM., Frank A., Hock C. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology. 2003; 61 (1): 46–54. DOI: https://www.doi.org/10.1212/01.WNL.0000073623.84147.A8

42. Nicoll J.A.R., Buckland G.R., Harrison C.H., Page A., Harris S., Love S., Neal J.W., Holmes C., Boche D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain 2019; 142 (7): 2113–26. DOI: https://www.doi.org/10.1093/BRAIN/AWZ142

43. Vandenberghe R., Riviere M. E., Caputo A., Sovago J., Maguire R.P., Farlow M., Marotta G., Sanchez-Valle R., Scheltens P., Ryan J.M., Graf A. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: a phase 2b study. Alzheimer’s dement. Transl Res Clin Interv. 2017; 3 (1): 10. DOI: https://www.doi.org/10.1016/J.TRCI.2016.12.003

44. Farlow M.R., Andreasen N., Riviere M.E., Vostiar I., Vitaliti A., Sovago J., Caputo A., Winblad B., Graf A. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimer’s Res Ther. 2015; 7 (1): 1–13. DOI: https://www.doi.org/10.1186/S13195-015-0108-3/FIGURES/3

45. Lacosta A.M., Pascual-Lucas M., Pesini P., Casabona D., Pérez-Grijalba V., Marcos-Campos I., Sarasa L., Canudas J., Badi H., Monleón I., San-José I., Munuera J., Rodríguez-Gómez O., Abdelnour C., Lafuente A., Buendía M., Boada M., Tárraga L., Ruiz A., Sarasa M. Safety, tolerability and immunogenicity of an active anti-Aβ 40 vaccine (ABvac40) in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase I trial. Alzheimer’s Res. Ther. 2018; 10 (1): 1–13. DOI: https://www.doi.org/10.1186/S13195-018-0340-8/FIGURES/4

46. Davtyan H., Ghochikyan A., Hovakimyan A., Davtyan A., Cadagan R., Marleau A.M., Albrecht R.A., García-Sastre A., Agadjanyan M.G. A dual vaccine against influenza & Alzheimer’s disease failed to enhance anti-β-amyloid antibody responses in mice with pre-existing virus specific memory. J Neuroimmunol. 2014; 277 (0): 77. DOI: https://www.doi.org/10.1016/J.JNEUROIM.2014.10.002

47. Miles L.A., Crespi G.A.N., Doughty L., Parker M.W. Bapineuzumab captures the n-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci Reports. 2013; 3 (1): 1–6. DOI: https://www.doi.org/10.1038/srep01302

48. Black R.S., Sperling R.A., Safirstein B., Motter R.N., Pallay A., Nichols A., Grundman M. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis Assoc Disord. 2010; 24 (2): 198–203. DOI: https://www.doi.org/10.1097/WAD.0B013E3181C53B00

49. Salloway S., Sperling R., Fox N.C., Blennow K., Klunk W., Raskind M., Sabbagh M., Honig L.S., Porsteinsson A.P., Ferris S., Reichert M., Ketter N., Nejadnik B., Guenzler V., Miloslavsky M., Wang D., Lu Y., Lull J., Tudor I.C., Liu E., Grundman M., Yuen E., Black R., Brashear H.R. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014; 370 (4): 322–33. DOI: https://www.doi.org/10.1056/NEJMOA1304839/SUPPL_FILE/NEJMOA1304839_DISCLOSURES.PDF

50. Cummings J.L., Cohen S., van Dyck C.H., Brody M., Curtis C., Cho W., Ward M., Friesenhahn M., Rabe C., Brunstein F., Quartino A., Honigberg L.A., Fuji R.N., Clayton D., Mortensen D., Ho C., Paul R., More Online C. A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology. 2018; 90 (21): e1889–e1897. DOI: https://www.doi.org/10.1212/WNL.0000000000005550

51. Dolton M.J., Chesterman A., Moein A., Sink K.M., Waitz A., Blondeau K., Kerchner G.A., Hu N., Brooks L., Wetzel-Smith M.K., Roden A., Deshmukh A., Peng K., Carrasco-Triguero M., Smith J., Ostrowitzki S., Quartino A. Safety, tolerability, and pharmacokinetics of high-volume subcutaneous crenezumab, with and without recombinant human hyaluronidase in healthy volunteers. Clin Pharmacol Ther. 2021; 110 (5): 1337–48. DOI: https://www.doi.org/10.1002/CPT.2385

52. Ostrowitzki S., Bittner T., Sink K.M., Mackey H., Rabe C., Honig L.S., Cassetta E., Woodward M., Boada M., Van Dyck C.H., Grimmer T., Selkoe D.J., Schneider A., Blondeau K., Hu N., Quartino A., Clayton D., Dolton M., Dang Y., Ostaszewski B., Sanabria-Bohórquez S.M., Rabbia M., Toth B., Eichenlaub U., Smith J., Honigberg L.A., Doody R.S. Evaluating the safety and efficacy of crenezumab vs placebo in adults with early Alzheimer disease: two phase 3 randomized placebo-controlled trials. JAMA Neurol. 2022; 79 (11): 1113–21. DOI: https://www.doi.org/10.1001/JAMANEUROL.2022.2909

53. Ghisays V., Lopera F., Goradia D.D., Protas H.D., Malek-Ahmadi M.H., Chen Y., Devadas V., Luo J., Lee W., Baena A., Bocanegra Y., Guzmán-Vélez E., Pardilla-Delgado E., Vila-Castelar C., Fox-Fuller J.T., Hu N., Clayton D., Thomas R.G., Alvarez S., Espinosa A., AcostaBaena N., Giraldo M. M., Rios-Romenets S., Langbaum J. B., Chen K., Su Y., Tariot P.N., Quiroz Y.T., Reiman E.M. PET evidence of preclinical cerebellar amyloid plaque deposition in autosomal dominant Alzheimer’s disease-causing presenilin-1 E280A mutation carriers. NeuroImage Clin. 2021; 31: 102749. DOI: https://www.doi.org/10.1016/J.NICL.2021.102749

54. Klein G., Delmar P., Voyle N., Rehal S., Hofmann C., Abi-Saab D., Andjelkovic M., Ristic S., Wang G., Bateman R., Kerchner G.A., Baudler M., Fontoura P., Doody R. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis. Alzheimer’s Res Ther. 2019; 11 (1): 1–12. DOI: https://www.doi.org/10.1186/S13195-019-0559-Z/FIGURES/3

55. Klein G., Delmar P., Kerchner G. A., Hofmann C., Abi-Saab D., Davis A., Voyle N., Baudler M., Fontoura P., Doody R. Thirty-six-month amyloid positron emission tomography results show continued reduction in amyloid burden with subcutaneous gantenerumab. J Prev Alzheimer’s Dis. 2021; 8 (1): 3–6. DOI: https://www.doi.org/10.14283/JPAD.2020.68/FIGURES/1

56. Sevigny J., Chiao P., Bussière T., Weinreb P.H., Williams L., Maier M., Dunstan R., Salloway S., Chen T., Ling Y., O’Gorman J., Qian F., Arastu M., Li M., Chollate S., Brennan M.S., Quintero-Monzon O., Scannevin R.H., Arnold H.M., Engber T., Rhodes K., Ferrero J., Hang Y., Mikulskis A., Grimm J., Hock C., Nitsch R.M., Sandrock A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016; 537 (7618): 50–6. DOI: https://www.doi.org/10.1038/NATURE19323

57. Congdon E.E., Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018; 14 (7): 399–415. DOI: https://www.doi.org/10.1038/S41582-018-0013-Z

58. Novak P., Schmidt R., Kontsekova E., Kovacech B., Smolek T., Katina S., Fialova L., Prcina M., Parrak V., Dal-Bianco P., Brunner M., Staffen W., Rainer M., Ondrus M., Ropele S., Smisek M., Sivak R., Zilka N., Winblad B., Novak M. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimer’s Res Ther. 2018; 10 (1): 1–16. DOI: https://www.doi.org/10.1186/S13195-018-0436-1/FIGURES/7

59. Novak P., Zilka N., Zilkova M., Kovacech B., Skrabana R., Ondrus M., Fialova L., Kontsekova E., Otto M., Novak M. AADvac1, an active immunotherapy for Alzheimer’s disease and non alzheimer tauopathies: an overview of preclinical and clinical development. J Prev Alzheimer’s Dis. 2019; 6 (1): 63–9. DOI: https://www.doi.org/10.14283/JPAD.2018.45

60. Bittar A., Bhatt N., Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis. 2020; 134: 104707. DOI: https://www.doi.org/10.1016/J.NBD.2019.104707

61. West T., Hu Y., Verghese P.B., Bateman R.J., Braunstein J.B., Fogelman I., Budur K., Florian H., Mendonca N., Holtzman D.M. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimer’s Dis. 2017; 4 (4): 236–41. DOI: https://www.doi.org/10.14283/JPAD.2017.36

62. High-Dose Aβ and tau immunotherapies complete initial safety tests ALZFORUM. URL: https://www.alzforum.org/news/conference-coverage/high-dose-av-and-tau-immunotherapies-complete-initial-safety-tests (date of access 20.02.2023)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»