Pathogenetic significance of the IL-10 family in severe acne
AbstractIntroduction. Currently, it has been established that acne is an inflammatory dermatosis with early subclinical formation of an inflammatory reaction. The family of cytokines associated with IL-10 includes several representatives: IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26 and type III interferons (IL-28A, IL-28B and IL-29). Currently, the mechanism of inflammation induction in acne is multicomponent, but not yet fully understood. At the same time, the role of the IL-10 family in the pathogenesis of acne has not been fully established.
Aim – to study the pathogenetic significance of the IL-10 family (IL-10, IL-19, IL-20, IL-22, IL-26) and type III interferons (IL-28A/IFN-λ2, IL-29/IFN-λ1) in severe acne.
Material and methods. To achieve this goal, a prospective open, non-randomized, single-center comparative study was conducted in 2020–2023. We observed 77 people aged 16 to 44 years in clinical conditions (median – 23.5 [10.7; 25.9] year). Studies of the levels of cytokines IL-10, IL-19, IL-20, IL-22, IL-26 and type III interferons (IL-28A/IFN-λ2, IL-29/IFN-λ1) were carried out in all 57 patients of the main group and 20 apparently healthy individuals of the comparison group in blood serum using multiplex enzyme immunoassay (Bio-Plex system using Luminex xMAP technology) using the Bio-Plex Pro™ Human Treg Cytokine Panel, 12-Plex (Bio-Rad Laboratories, USA). The results of the multiplex analysis were read on the Bio-Plex 200 System analyzer (Bio-Rad Laboratories, USA) using Luminex xPONENT software. Statistical processing of the results was carried out using software products Microsoft Excel 2016, GraphPad Prizm 5.0 and Statistica 10.0.
Results. The level of cytokines IL-20, IL-22, IL-26 in the blood serum of patients with severe acne was significantly (p < 0.05) increased relative the comparison group. At the same time, the level of cytokines IL-10 and IL-19, which have pronounced anti-inflammatory activity, significantly increased in the main group compared with the comparison group. Analysis of the level of type III interferons IL-28A/IFN-λ2 and IL-29/IFN-λ1 showed its significant increase (p < 0.05) in the sera of acne patients compared with the comparison group.
Conclusion. The data obtained by us on changes in the levels of cytokines of the IL-10 family (IL-10, IL-19, IL-20, IL-22, IL-26) and type III interferons (IL-28A/IFN-λ2, IL-29/IFN-λ1) indicate a violation of the interaction of innate and adaptive immunity systems in severe acne, which is important for understanding the mechanism of development of this disease.
Keywords:acne; IL-10 family; cytokines; interferons; inflammation
For citation: Rumyantsev A.G., Demina O.M., Grechenko V.V., Gankovskaya L.V., Potekaev N.N. Pathogenetic significance of the IL-10 family in severe acne. Immunologiya. 2023; 44 (4): 463–70. DOI: https://doi.org/10.33029/0206-4952-2023-44-4-463-470 (in Russian)
Funding. The study had no sponsor support.
Conflict of interests. Authors declare no conflict of interests.
Authors’ contribution. Research concept and design – Rumyantsev A.G., Demina O.M.; material collection and processing – Demina O.M., Grechenko V.V.; statistical data processing – Grechenko V.V.; text writing – Demina O.M., Grechenko V.V.; editing – Rumyantsev A.G., Demina O.M., Potekaev N.N., Gankovskaya L.V.
References
1. Gollnick H., Abanmi A.A., Al-Enezi M., Al Hammadi A., Galadari I., Kibbi A.G., Zimmo S. Managing acne in the Middle East: consensus recommendations. J Eur Acad Dermatol Venereol. 2017; 31 (7): 4–35. DOI: https://doi.org/10.1111/jdv.14491
2. Kang S., Cho S., Chung J.H. Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-kappaB and activator protein-1 in inflammatory acne lesions in vivo. Am J Pathol. 2005; 166: 1691–99. DOI: https://doi.org/10.1016/s0002-9440(10)62479-0
3. Saint-Jean M., Khammari A., Jasson F., Nguyen J.M., Dréno B. Different cutaneous innate immunity profiles in acne patients with and without atrophic scars. Eur J Dermatol. 2016; 26 (1): 68–74. DOI: https://doi.org/10.1684/ejd.2015.2713
4. Kelhälä H.L., Palatsi R., Fyhrquist N., Lehtimäki S., Väyrynen J.P., Kallioinen M., Kubin M.E., Greco D., Tasanen K., Alenius H., Bertino B., Carlavan I., Mehul B., Déret S. Reiniche P., Martel P., Marty C., Blume-Peytavi U., Voegel J.J., Lauerma A. IL-17/Th17 pathway is activated in acne lesions. PLoS One. 2014; 25; 9 (8):e105238. DOI: https://doi.org/10.1371/journal.pone.0105238
5. O’Neill A.M., Gallo R. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018; 2; 6 (1): 177. DOI: https://doi.org/10.1186/s40168-018-0558-5
6. Rahmayani T., Putra I.B., Jusuf N.K. The Effect of Oral Probiotic on the Interleukin-10 Serum Levels of Acne Vulgaris. Open Access Maced J Med Sci. 2019; 10; 7 (19): 3249–252. DOI: https://doi.org/10.3889/oamjms.2019.718
7. Hazarika N. Acne vulgaris: new evidence in pathogenesis and future modalities of treatment. J Dermatolog. Treat. 2021; 32 (3): 277–85. DOI: https://doi.org//10.1080/09546634.2019.1654075
8. Zouboulis C.C. Endocrinology and immunology of acne: Two sides of the same coin. Exp Dermatol. 2020; 29 (9): 840–59. DOI: https://doi.org/10.1111/exd.14172
9. Platsidaki E., Dessinioti C. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne. F1000Res. 2018; 19 (7): F1000 Faculty Rev-1953. DOI: https://doi.org/10.12688/f1000research.15659.1
10. Ni S., Shan F., Geng J. Interleukin-10 family members: Biology and role in the bone and joint diseases. Int. Immunopharmacol. 2022; 108: 108881. DOI: https://doi.org/10.1016/j.intimp.2022.108881
11. Chen J., Caspi R.R., Chong W.P. IL-20 receptor cytokines in autoimmune diseases. J Leukoc Biol. 2018; 104 (5): 953–59. DOI: https://doi.org/10.1002/JLB.MR1117-471R
12. Ip WKE, Hoshi N., Shouval D.S., Snapper S., Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017; 5; 356 (6337): 513–19. DOI: https://doi.org/10.1126/science.aal3535
13. Smith L.K., Boukhaled G.M., Condotta S.A., Mazouz S., Guthmiller J.J., Vijay R., Butler N.S., Bruneau J., Shoukry N.H., Krawczyk C.M., Richer M.J. Interleukin-10 directly inhibits. CD8+ T cell function by enhancing N-Glycan branching to decrease antigen sensitivity. Immunity. 2018; 48 (299–312): e295. DOI: https://doi.org/10.1016/j.immuni.2018.01.006
14. Mohamed M., Shehata H.A.A, Fahmy N.F., Saleh R. Evaluation of serum levels of interleukins 1-beta, 10 and 12 in patients with acne vulgaris. J Cosmet Dermatol. 2022; 21 (12): 7100–106. DOI: https://doi.org/10.1111/jocd.15399
15. Elisyutina O.G., Fedenko E.S., Boldyreva M.N., Gudima G.O. Characteristics of immune response and role of cytokines in atopic dermatitis. Russian Journal of Allergy. 2015, 1: 3–14 (in Russian)
16. Elisyutina O.G., Fedenko E.S., Boldyreva M.N., Gudima G.O. Genetic aspects of immunopathogenesis of atopic dermatitis. Immunologiya. 2015, 36 (2): 122–28. (in Russian)
17. Ilina N.I., Gudima G.O. Immune-mediated inflammatory diseases. Uniting concept. Russian Journal of Allergy. 2005, 1: 3–6 (in Russian)
18. Beylot C., Auffret N., Poli F., Claudel J.P., Leccia M.T., Del Giudice P., Dreno B. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol. 2014; 28 (3): 271–78. DOI: https://doi.org/10.1111/jdv.12224
19. Ilina N.I., Gudima G.O. Inflammation and immunity in general clinical practice. The general concept. Cytokines and inflammation. 2005; 4 (3): 42–44 (in Russian)
20. Antonia R.J., Karelehto E., Toriguchi K., Matli M., Warren R.S., Pfeffer L.M., Donner D.B. STAT3 regulates inflammatory cytokine production downstream of TNFR1 by inducing expression of TNFAIP3/A20. J Cell Mol Med. 2022; 26 (16): 4591–601. DOI: https://doi.org/10.1111/jcmm.17489
21. Puigdevall L., Michiels C., Stewardson C., Dumoutier L. JAK/STAT: Why choose a classical or an alternative pathway when you can have both? J Cell Mol Med. 2022; 26 (7): 1865–75. DOI: https://doi.org/10.1111/jcmm.17168
22. Jiang Q., Yang G., Xiao F., Xie J., Wang S., Lu L., Cui D. Role of Th22 cells in the pathogenesis of autoimmune diseases. Front. Immunol. 2021; 6; 12: 688066. DOI: https://doi.org/10.3389/fimmu.2021.688066
23. Lee G.R. Molecular mechanisms of T helper cell differentiation and functional specialization. Immune Netw. 2023; 17: 23 (1): e4. DOI: https://doi.org/10.4110/in.2023.23.e4
24. Zhang K., Chen L., Zhu C., Zhang M., Liang C. Current Knowledge of Th22 Cell and IL-22 functions in infectious diseases. Pathogens. 2023; 23: 12 (2): 176. DOI: https://doi.org/10.3390/pathogens12020176
25. Dréno B., Khammari A., Brocard A., Moyse D., Blouin E., Guillet G., Léonard F., Knol A.C. Hidradenitis suppurativa: the role of deficient cutaneous innate immunity. Arch Dermatol. 2012; 148: 182–6. DOI: https://doi.org/10.1001/archdermatol.2011.315