Role of IL-25, IL-33 and TSLP in the development of corticosteroid resistance
Abstract
Allergy are a common problem all over the world. These include allergic rhinitis, atopic dermatitis and, perhaps the most severe allergic disease, bronchial asthma. All of them have a major impact on quality of life and some are even life-threatening.
There are a number of protocols for the treatment of allergy, including treatment with glucocorticosteroids. However, it is worth noting that ~ 10 % of patients do not respond well to this type of therapy. In view of this, the search and study of new targets not only for the treatment of allergic diseases, but also for the prevention of the development of corticosteroid resistance in patients seems relevant. A number of cytokines described in the literature, including IL-25, IL-33 and TSLP are involved in the mechanism of allergic disease development, for example by contributing to Th2-cell activation and initiation of pro-inflammatory cascades, and some of them can influence the appearance of corticosteroid resistance. This review provides information on what we believe to be relevant therapeutic targets that would increase the efficacy of allergy therapy, including by reducing the risks of the development of said resistance.
Keywords:corticosteroid resistance; allergic rhinitis; asthma; IL-25; IL-33; TSLP
For citation: Poroshina A.S., Shershakova N.N., Shilovskiy I.P., Kadushkin A.G., Tahanovich A.D., Gudima G.O., Khaitov M.R. Role of IL-25, IL-33 and TSLP in the development of corticosteroid resistance. Immunologiya. 2023; 44 (4): 500–10. DOI: https://www.doi.org/10.33029/0206-4952-2023-44-4-500-510 (in Russan)
Funding. The study was supported by Russian Science Foundation grant No. 23-45-10031 (https://rscf.ru/project/23-45-10031).
Conflict of interests. The authors declare no conflict of interests.
Authors’ contribution. All authors have contributed equally to the study, read the final version of the article and agreed with its contents.
References
1. Zuberbier T., Lötvall J., Simoens S., Subramanian S.V., Church M.K. Economic burden of inadequate management of allergic diseases in the European Union: a GA2LEN review. Allergy. 2014; 69:1275–9. DOI: https://doi.org/10.1111/all.12470
2. Agnihotri N.T., McGrath K.G. Allergic and nonallergic rhinitis. Allergy Asthma Proc. 2019; 40: 376–9. DOI: https://doi.org/10.2500/aap.2019.40.4251
3. Melum G.R., Farkas L., Scheel C., Van Dieren B., Gran E., Liu Y.-J., et al. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa. J Allergy Clin Immunol. 2014; 134: 613–21. DOI: https://doi.org/10.1016/j.jaci.2014.05.010
4. Nakanishi W., Yamaguchi S., Matsuda A., Suzukawa M., Shibui A., Nambu A., et al. IL-33, but Not IL-25, is crucial for the development of house dust mite antigen-induced allergic rhinitis. PLoS ONE. 2013; 8 : 1–8. DOI: https://doi.org/10.1371/journal.pone.0078099
5. Gusniev S.A., Polner S.A., Mikhaleva L.M., Ilina N.I., Esakova A.P., Kurbacheva O.M., Shilovskiy I.P., Khaitov M.R. Infl uence of interleukin-33 gene expression on clinical and morphological characteristics of the nasal mucosa in allergic rhinitis. Immunologiya. 2021; 42 (1): 68–79. DOI: https://doi.org/10.33029/0206-4952-2021-42-1-68-79 (in Russian)
6. Shilovskiy I., Nikonova A., Barvinskaia E., Kaganova M., Nikolskii A., Vishnyakova L., et al. Anti-inflammatory effect of siRNAs targeted il-4 and il-13 in a mouse model of allergic rhinitis. Allergy. 2022; 77: 2829–32. DOI: https://doi.org/10.1111/all.15366
7. Froidure A., Shen C., Gras D., Van Snick J., Chanez P., Pilette C. Myeloid dendritic cells are primed in allergic asthma for thymic stromal lymphopoietin-mediated induction of Th2 and Th9 responses. Allergy. 2014; 69 (8): 1068–76. DOI: https://doi.org/10.1111/all.12435
8. Vignali D.A.A., Collison L.W., Workman C.J. How regulatory T cells work. Nat Rev Immunol. 2008; 8 : 523–32. DOI: https://doi.org/10.1038/nri2343
9. Khodoun M.V., Tomar S., Tocker J.E., Wang Y.H., Finkelman F.D. Prevention of food allergy development and suppression of established food allergy by neutralization of thymic stromal lymphopoietin, IL-25, and IL-33. J Allergy Clin Immunol. 2018; 141 (1): 171–9. DOI: https://doi.org/10.1016/j.jaci.2017.02.046
10. Nikolskii A.A., Shilovskiy I.P., Yumashev K.V., Vishniakova L.I., Barvinskaia E.D., Kovchina V.I., Korneev A.V., Turenko V.N., Kaganova M.M., Brylina V.E., Nikonova A.A., Kozlov I.B., Kofiadi I.A., Sergeev I.V., Maerle A.V., Petukhova О.А., Kudlay D.A., Khaitov M.R. Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation. Immunologiya. 2021; 42 (6): 600–14. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-600-614 (in Russian)
11. Hong H., Liao S., Chen F., Yang Q., Wang D.-Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020; 75 (11): 2794–804. DOI: https://doi.org/10.1111/all.14526
12. Klose C.S.N., Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016; 17 (7): 765–74. DOI: https://doi.org/10.1038/ni.3489
13. Corren J., Ziegler S.F. TSLP: from allergy to cancer. Nat. Immunol. 2019; 20 (12): 1603–9. DOI: https://doi.org/10.1038/s41590-019-0524-9
14. Yang L., Fu J., Zhou Y. Research progress in atopic march. Frontiers in Immunology. 2020; 11 : 1907. DOI: https://doi.org/10.3389/fimmu.2020.01907
15. Simbirtsev A.S. Cytokines and their role in immune pathogenesis of allergy. Russian Medical Inquiry. 2021; 5 (1): 32–7. DOI: https://doi.org/10.32364/2587-6821-2021-5-1-32-37 (in Russian)
16. Гущин И.С., Хаитов Р.М. Устранение участников механизма аллергии – устранение механизмов гомеостаза? Новые подходы к лечению аллергии. Российский аллергологический журнал. 2022; 19 (1): 11–42. DOI: https://doi.org/10.36691/RJA1514
17. Bystritskaya E.P., Murashkin N.N., Materikin A.I., Naumova E.A., Svitich O.A. Genome-wide DNA methylation profile and expression of TLR2, TLR9, IL4, IL13 genes in pediatric patients with atopic dermatitis. Immunologiya. 2022; 43 (3): 255–65. DOI: https://doi.org/10.33029/0206-4952-2022-43-3-255-265 (in Russian)
18. Miao X., Chen D. IL-25 in allergic inflammation. Immunological Reviews. 2017; 278 (1): 185–91. DOI: https://doi.org/10.1111/imr.12558
19. Kim D.W., Kim D.-K., Eun K.M., Bae J.-S., Chung Y.-J., Xu J., Kim Y.M., Mo J.H. IL-25 Could be involved in the development of allergic rhinitis sensitized to house dust mite. Mediators Inflamm. 2017; 2017: 3908049. DOI: https://doi.org/10.1155/2017/3908049
20. Baekkevold E.S., Roussigne M., Yamanaka T., Johansen F.E., Jahnsen F.L., Amalric F., Brandtzaeg P., Erard M., Haraldsen G., Girard J.P. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003; 163 (1): 69–79. DOI: https://doi.org/10.1016/S0002-9440(10)63631-0
21. Di Salvo E., Ventura-Spagnolo E., Casciaro M., Navarra M., Gangemi S. IL-33/IL-31 Axis: a potential inflammatory pathway. Mediators of inflammation. 2018; 2018: 3858032. DOI: https://doi.org/10.1155/2018/3858032
22. Guarneri F., Minciullo P.L., Mannucci C., Calapai F., Saitta S., Cannavò S.P., Gangemi S. IL-31 and IL-33 circulating levels in allergic contact dermatitis. European annals of allergy and clinical immunology. 2015; 47 (5): 156–8. PMID: 26357000.
23. Iliev I.D., Spadoni I., Mileti E., Matteoli G., Sonzogni A., Sampietro G.M., Foschi D, Caprioli F, Viale G, Rescigno M. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009; 58 (11): 1481–9. DOI: https://doi.org/10.1136/gut.2008.175166
24. Nagarkar D.R., Poposki J.A., Comeau M.R., Biyasheva A., Avila P.C., Schleimer R.P., Kato A. Airway epithelial cells activate Th2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 2012; 130 (1): 225–32.e4. DOI: https://doi.org/10.1016/j.jaci.2012.04.019
25. Fornasa G., Tsilingiri K., Caprioli F., Botti F., Mapelli M., Meller S., Kislat A., Homey B., Di Sabatino A., Sonzogni A., Viale G., Diaferia G., Gori A., Longhi R., Penna G., Rescigno M. Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. J. Allergy Clin. Immunol. 2015; 136 (2): 413–22. DOI: https://doi.org/10.1016/j.jaci.2015.04.011
26. Kashyap M., Rochman Y., Spolski R., Samsel L., Leonard W.J. Thymic Stromal Lymphopoietin Is Produced by Dendritic Cells. J. Immunol. 2011; 187 (3): 1207–11. DOI: https://doi.org/10.4049/jimmunol.1100355
27. Zhang K., Shan L., Rahman M.S., Unruh H., Halayko A.J., Gounni A.S. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2007; 293 (2): 375–82. DOI: https://doi.org/10.1152/ajplung.00045.2007
28. Ying S., O’Connor B., Ratoff J., Meng Q., Fang C., Cousins D., et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. The Journal of Immunology. 2008; 181: 2790–8. DOI: https://doi.org/10.4049/jimmunol.181.4.2790
29. Ohba T., Haro H., Ando T., Koyama K., Hatsushika K., Suenaga F., Ohnuma Y, Nakamura Y, Katoh R, Ogawa H, Hamada Y, Nakao A. A potential role of thymic stromal lymphopoietin in the recruitment of macrophages to mouse intervertebral disc cells via monocyte chemotactic protein 1 induction: Implications for herniated discs. Arthritis Rheum. 2008; 58 (11): 3510–9. DOI: https://doi.org/10.1002/art.23965
30. De Monte L., Reni M., Tassi E., Clavenna D., Papa I., Recalde H., Braga M., Di Carlo V., Doglioni C., Protti M.P. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011; 208 (3): 469–78. DOI: https://doi.org/10.1084/jem.20101876
31. Varricchi G., Pecoraro A., Marone G., Criscuolo G., Spadaro G., Genovese A., Marone G. Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders, and Cancer. Front Immunol. 2018; 9: 1595. DOI: https://doi.org/10.3389/fimmu.2018.01595
32. Harada M., Hirota T., Jodo A.I., Doi S., Kameda M., Fujita K., Miyatake A., Enomoto T., Noguchi E., Yoshihara S., Ebisawa M., Saito H., Matsumoto K., Nakamura Y., Ziegler S.F., Tamari M. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology. 2009; 40 (3): 368–74. DOI: https://doi.org/10.1165/rcmb.2008-0041OC
33. Chai R., Liu B., Qi F. The significance of the levels of IL-4, IL-31 and TLSP in patients with asthma and/or rhinitis. Immunotherapy. 2017; 9 (4): 331–7. DOI: https://doi.org/10.2217/imt-2016-0131
34. Demehri S., Morimoto M., Holtzman M.J., Kopan R. Skin-Derived TSLP triggers progression from epidermal-barrier defects to asthma. PLoS Biol. 2009; 7(5): e1000067. DOI: https://doi.org/10.1371/journal.pbio.1000067
35. Nikonova A., Shilovskiy I., Galitskaya M., Sokolova A., Sundukova M., Dmitrieva-Posocco O., Mitin A., Komogorova V., Litvina M., Sharova N., Zhernov Y., Kudlay D., Dvornikov A., Kurbacheva O., Khaitov R., Khaitov M. Respiratory syncytial virus upregulates IL-33 expression in mouse model of virus-induced inflammation exacerbation in OVA-sensitized mice and in asthmatic subjects. Cytokine. 2021; 138: 155349. DOI: https://doi.org/10.1016/j.cyto.2020.155349
36. Shilovskiy I.P., Sundukova M.S., Korneev A.V., Nikolskii A.A., Barvinskaia E.D., Kovchina V.I., Vishniakova L.I., Turenko V.N., Yumashev K.V., Kaganova M.M., Brylina V.E., Sergeev I., Maerle A., Kudlay D.A., Petukhova O., Khaitov M.R. The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma. Int Immunopharmacol. 2022; 103:108432. DOI: https://doi.org/10.1016/j.intimp.2021.108432
37. Shilovskiy I.P., Nikolskii A.A., Kovchina V.I., Bolotova S.I., Vishniakova L.I., Sokolova A.R., Barvinskaia E.D., Khaitov M.R. Activation of Тh17-immune response in a mouse model of neutrophilic asthma. Immunologiya. 2019; 40 (6): 5–15. DOI: https://doi.org/10.24411/0206-4952-2019-16001 (in Russian)
38. Zheng H., Zhang Y., Pan J., Liu N., Qin Y., Qiu L., Liu M., Wang T. The Role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021; 12: 58607 DOI: https://doi.org/10.3389/fimmu.2021.586078
39. Lloyd C.M., Snelgrove R.J. Type 2 immunity: Expanding our view. Sci. Immunol. 2018; 3 (25): 3 (25): eaat1604. DOI: https://doi.org/10.1126/sciimmunol.aat1604
40. Murdaca G., Greco M., Tonacci A., Negrini S., Borro M., Puppo F., Gangemi S. IL-33/IL-31 Axis in immune-mediated and allergic diseases. Int. J. Mol. Sci. 2019; 20 (23): 5856. DOI: https://doi.org/10.3390/ijms20235856
41. Cayrol C., Girard J.-P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol. Rev. 2018; 281 (1): 154–68. DOI: https://doi.org/10.1111/imr.12619
42. Salimi M., Barlow J.L., Saunders S.P., Xue L., Gutowska-Owsiak D., Wang X., Huang L.C., Johnson D., Scanlon S.T., McKenzie A.N., Fallon P.G., Ogg G.S. A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 2013; 210 (13): 2939–50. DOI: https://doi.org/10.1084/jem.20130351
43. Haenuki Y., Matsushita K., Futatsugi-Yumikura S., Ishii K.J., Kawagoe T., Imoto Y., Fujieda S., Yasuda M., Hisa Y., Akira S., Nakanishi K., Yoshimoto T. A critical role of IL-33 in experimental allergic rhinitis. J Allergy Clin Immunol. 2012; 130 (1): 184–94. DOI: https://doi.org/10.1016/j.jaci.2012.02.013
44. Yang G., Suo L.-M., Geng X.-R., Zeng X.-H., Liu J.-Q., Liu Z.-Q., Li M., Chen Y.R., Hong J.Y., Xue J.M., Yang P.C. An eosinophil-Sos1-RAS axis licenses corticosteroid resistance in patients with allergic rhinitis. Immunobiology. 2022; 227(3): 152215. DOI: https://doi.org/10.1016/j.imbio.2022.152215
45. Shilovskii I.P., Sundukova M.S., Gaisina A.R., Laskin A.A., Smirnov V.V., Babakhin A.A., Khaitov M.R. RNA interference: new approach to the treatment of allergic asthma (a review). Eksp Klin Farmakol. 2016; 79 (4): 35–44. DOI: https://doi.org/10.30906/0869-2092-2016-79-4-35-44 (in Russian)
46. Shilovskiy I.P., Eroshkina D.V., Babakhin A.A., Khaitov M.R. Anticytokine therapy of allergic asthma. Mol Biol. 2017; 51: 1–13. DOI: https://doi.org/10.1134/S0026893316060194
47. Egan M., Bunyavanich S. Allergic rhinitis: the «Ghost Diagnosis» in patients with asthma. Asthma Res Pract. 2015; 1:8. DOI: https://doi.org/10.1186/s40733-015-0008-0
48. Shilovskiy I.P., Nikolskii A.A., Kovchina V.I., Vishniakova L.I., Yumashev K.V., Barvinskaia E.D., Kaganova M.M, Korneev A.V, Turenko V.N, Brylina V.E, Petukhova O.A, Kudlay D.A, Khaitov M.R. Murine model of steroid-resistant neutrophilic bronchial asthma as an attempt to simulate human pathology. J Immunol Methods. 2022; 505: 113268. DOI: https://doi.org/10.1016/j.jim.2022.113268
49. Kabata H., Moro K., Fukunaga K., Suzuki Y., Miyata J., Masaki K., Betsuyaku T., Koyasu S., Asano K. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun. 2013; 4: 2675. DOI: https://doi.org/10.1038/ncomms3675
50. Petersen B.C., Budelsky A.L., Baptist A.P., Schaller M.A., Lukacs N.W. Interleukin-25 induces type 2 cytokine production in a steroid-resistant interleukin-17RB+ myeloid population that exacerbates asthmatic pathology. Nat. Med. 2012; 18 (5): 751–8. DOI: https://doi.org/10.1038/nm.2735
51. Chen Y., Yang M., Deng J., Wang K., Shi J., Sun Y. Elevated levels of activated and pathogenic eosinophils characterize moderate-severe house dust mite allergic rhinitis. J Immunol Res. 2020; 2020: 8085615. DOI: https://doi.org/10.1155/2020/8085615
52. Gushchin I.S. Autorestriction and resolution of allergic process. Immunologiya. 2020; 41 (6): 557–80. DOI: https://doi.org/10.33029/0206-4952-2020-41-6-557-580 (in Russian)
53. Ciprandi G., Vizzaccaro A., Cirillo I., Tosca M., Massolo A., Passalacqua G. Nasal eosinophils display the best correlation with symptoms, pulmonary function and inflammation in allergic rhinitis. Int Arch Allergy Immunol. 2005; 136 (3): 266–72. DOI: https://doi.org/10.1159/000083953
54. Ogasawara H., Furuno M., Edamura K., Noguchi M. Peptides of major basic protein and eosinophil cationic protein activate human mast cells. Biochem Biophys Rep. 2019; 21: 100719. DOI: https://doi.org/10.1016/j.bbrep.2019.100719
55. Baltanás F.C., Zarich N., Rojas-Cabañeros J.M., Santos E. SOS GEFs in health and disease. Biochim. Biophys. Acta Rev. Cancer. 2020; 1874 (2): 188445. DOI: https://doi.org/10.1016/j.bbcan.2020.188445
56. Yang S., Van Aelst L., Bar-Sagi D. differential interactions of human sos1 and sos2 with grb2*. J. Biol. Chemistry. 1995; 270 (31): 18212–5. DOI: https://doi.org/10.1074/jbc.270.31.18212
57. Simanshu D.K., Nissley D.V., McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell. 2017; 170(1): 17–33. DOI: https://doi.org/10.1016/j.cell.2017.06.009
58. Silverman M.N., Sternberg E.M. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann. N. Y. Acad. Sci. 2012; 1261: 55–63. DOI: https://doi.org/10.1111/j.1749-6632.2012.06633.x
59. Dvorin E.L., Ebell M.H. Short-term systemic corticosteroids: appropriate use in primary care. Am. Fam. Physician. 2020; 101 (2): 89–94. PMID: 31939645.
60. Krasnikh L.M., Gaisina A.R., Shilovskiy I., Nikonova A., Mitin A.N., Komogorova V.V., Litvina M.L., Sharova N.I., Nikolskii A.A., Smirnov V.V., Ramenskaya G.V., Kamyshnikov O.Y., Khaitov M.R., Bunyatyan N.D., Serebrova S. Yu. The study of pharmacological efficiency of siRNA tarfeted to IL-33 on the mouse model of virus-induced exacerbations of bronchial asthma. Russian Journal of Biopharmaceuticals. 2018; 10:49–55.
61. Khaitov M.R., Gaisina A.R., Shilovskiy I.P., Smirnov V.V., Ramenskaia G.V., Nikonova A.A., et al. The role of interleukin-33 in pathogenesis of bronchial asthma. New experimental data. Biochemistry (Moscow). 2018; 83 (1): 13–25. DOI: https://doi.org/10.1134/S0006297918010029
62. Tamachi T., Maezawa Y., Ikeda K., Kagami S.-I., Hatano M., Seto Y., et al. IL-25 enhances allergic airway inflammation by amplifying a Th2 cell-dependent pathway in mice. J. Allergy Clin. Immunol. 2006; 118 (3): 606–14. DOI: https://doi.org/10.1016/j.jaci.2006.04.051