Transcriptional response of macrophages to combined stimulation of NOD-like and Toll-like receptors (report 2)

Abstract

Introduction. Combinations of NOD-like and Toll-like receptor agonists are potent activators of macrophages. However, there is lack of detailed characteristics of transcriptional alterations occurring in macrophages stimulated by these agonists combinations.

Aim – to reveal and compare groups of genes characterized by increased and reduced expression upon combined stimulation of human macrophages with NOD1 and TLR4 agonists in vitro.

Material and methods. Macrophages generated from healthy donor monocytes were stimulated with NOD1 and TLR4 agonists separately or simultaneously during 1 or 4 hours. Transcriptomes were analysed using high-throughput RNA sequencing (RNA-seq) and bioinformatics.

Results. In macrophages stimulated with NOD1 + TLR4 agonist combination, we identified two groups of genes (> 500 genes each) characterized by either augmented or repressed mRNA expression. The inducible group was strongly enriched with genes encoding key inflammatory mediators, except for typical markers of M1 activation. The repressible group was enriched with genes coding for cell cycle regulators. Using bioinformatics approaches, we identified potential mechanisms that may underlie transcriptional reprogramming of macrophages in these activation conditions.

Conclusions. Combination of NOD1 and TLR4 agonists induces transcriptional reprogramming of macrophages compatible with innate type of activation.

Keywords:macrophages; transcriptome; NOD1; TLR4; muramyl peptides; lipopolysaccharide; RNA sequencing

For citation: Masyutina A.M., Pashenkov M.V. Transcriptional response of macrophages to combined stimulation of NOD-like and Toll-like receptors (report 2). Immunologiya. 2023; 44 (5): 534–44. DOI: https://doi.org/10.33029/1816-2134-2023-44-5-534-544 (in Russian)

Funding. The work was supported by the Russian Science Foundation grant No. 21-15-00211.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Conducting experiments and analysing results – Masyutina A.M.; designing experiments, analysing results and writing the article – Pashenkov M.V.

References

1. Budikhina A.S., Murugina N.E., Maximchik P. V., Dagil Y.A., Nikolaeva A.M., Balyasova L.S., Murugin V.V., Selezneva E.M., Pashchenkova Y.G., Chkadua G.Z., Pinegin B.V., Pashenkov M.V. Interplay between NOD1 and TLR4 Receptors in Macrophages: Nonsynergistic Activation of Signaling Pathways Results in Synergistic Induction of Proinflammatory Gene Expression. J Immunol. 2021; 206 (9): 2206-20. DOI: https://doi.org/10.4049/jimmunol.2000692

2. Fritz J.H., Girardin S.E., Fitting C., Werts C., Mengin-Lecreulx D., Caroff M., Cavaillon J.M., Philpott D.J., Adib-Conquy M. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol. 2005; 35 (8): 2459-70. DOI: https://doi.org/10.1002/eji.200526286

3. van Heel D.A., Ghosh S., Butler M., Hunt K., Foxwell B.M.J., Mengin-Lecreulx D., Playford R.J. Synergistic enhancement of Toll-like receptor responses by NOD1 activation. EurJImmunol. 2005; 35 (8): 2471-6. DOI: https://doi.org/10.1002/eji.200526296

4. Пичугин А.В., Багаев А.В., Лебедева Е.С., Чулкина М., Атауллаханов Р.И. Синергическая продукция цитокинов дендритными клетками в ответ на одновременную активацию парами агонистов различных рецепторов врожденного иммунитета. Иммунология. 2017; 38 (2): 118-23. DOI: https://doi.org/10.18821/0206-4952-2017-38-2-118-123 [Pichugin A.V., Bagaev A.V., Lebedeva E.S., Chulkina M., Ataullakhanov R.I. Synergistic cytokine production by murine dendritic cells in response to their simultaneous activation with pairs of agonists of different innate immune receptors. Immunologiya. 2017; 38 (2): 118-23. DOI: https://doi.org/10.18821/0206-4952-2017-38-2-118-123(in Russian)]

5. Tukhvatulin A., Dzharullaeva A., Erokhova A., Zemskaya A., Balyasin M., Ozharovskaia T., Zubkova O., Shevlyagina N., Zhukhovitsky V., Fedyakina I., Pruss I., Shcheblyakov D., Naroditsky B., Logunov D., Gintsburg A. Adjuvantation of an influenza hemagglutinin antigen with TLR4 and NOD2 agonists encapsulated in poly(D,l-lactide-co-glycolide) nanoparticles enhances immunogenicity and protection against lethal influenza virus infection in mice. Vaccines. 2020; 8 (3): 1-28. DOI: https://doi.org/10.3390/vaccines8030519

6. Tukhvatulin A.I., Gitlin I.I., Shcheblyakov D. V., Artemicheva N.M., Burdely L.G., Shmarov M.M., Naroditsky B.S., Gudkov A.V., Gintsburg A.L., Logunov D.Y. Combined stimulation of Toll-like receptor 5 and Nod1 strongly potentiates activity of NF-κB, resulting in enhanced innate immune reactions and resistance to Salmonella enterica serovar typhimurium infection. Infect. Immun. 2013; 81 (10): 3855-64. DOI: https://doi.org/10.1128/IAI.00525-13

7. Takada H., Galanos C. Enhancement of endotoxin lethality and generation of anaphylactoid reactions by lipopolysaccharides in muramyl-dipeptide-treated mice. Infect. Immun. 1987; 55 (2): 409-13. DOI: https://doi.org/10.1128/iai.55.2.409-413.1987

8. Murch O., Abdelrahman M., Kapoor A., Thiemermann C. Muramyl dipeptide enhances the response to endotoxin to cause multiple organ injury in the anesthetized rat. Shock. 2008; 29 (3): 388-94. DOI: https://doi.org/10.1097/SHK.0b013e3181453e59

9. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 1998; 282 (5396): 2085-8. DOI: https://doi.org/10.1126/science.282.5396.2085

10. Girardin S.E., Travassos L.H., Hervé M., Blanot D., Boneca I.G., Philpott D.J., Sansonetti P.J., Mengin-Lecreulx D. . Peptidoglycan Molecular Requirements Allowing Detection by Nod1 and Nod2. J Biol Chem. 2003; 278 (43): 41702-8. DOI: https://doi.org/10.1074/jbc.M307198200

11. Масютина А.М., Пащенков М.В. Транскрипционный ответ макрофагов на сочетанную стимуляцию NOD-подобного и Toll-подобного рецептора. Иммунология 2023; 44 (4): 408-18. DOI: https://doi.org/10.33029/0206-4952-2023-44-4-408-418 [Masyutina A.M., Pashenkov M.V. Transcriptional response of macrophages to combined stimulation of a NOD-like and a Toll-like receptor. Immunologiya. 2023; 44 (4): 408-18. DOI: https://doi.org/10.33029/0206-4952-2023-44-4-408-418 (in Russian)]

12. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995; 57 (1): 289-300. DOI: https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

13. Gearing L.J., Cumming H.E., Chapman R., Finkel A.M., Woodhouse I.B., Luu K., Gould J.A., Forster S.C., Hertzog P.J. Cillder: A tool for predicting and analysing transcription factor binding sites. PLoS One. 2019; 14 (9): e0215495. DOI: https://doi.org/10.1371/journal.pone.0215495

14. Agarwal V., Kelley D.R. The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biol. 2022; 23 (1): 245. DOI: https://doi.org/10.1186/S13059-022-02811-X

15. Vallabhapurapu S., Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol. 2009; 27: 693-733. DOI: https://doi.org/10.1146/annurev.immunol.021908.132641

16. Wang Q., Ni H., Lan L., Wei X., Xiang R., Wang Y. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 2010; 20 (6): 701-12. DOI: https://doi.org/10.1038/CR.2010.52

17. Matsumoto M., Einhaus D., Gold E.S., Aderem A. Simvastatin augments lipopolysaccharide-induced proinflammatory responses in macrophages by differential regulation of the c-Fos and c-Jun transcription factors. J Immunol. 2004; 172 (12): 7377-84. DOI: https://doi.org/10.4049/jimmunol.172.12.7377

18. Chistiakov D.A., Myasoedova V.A., Revin V. V., Orekhov A.N., Bobryshev Y.V. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018; 223 (1): 101-11. DOI: https://doi.org/10.1016/j.imbio.2017.10.005

19. Graves D.T., Milovanova T.N. Mucosal Immunity and the FOXO1 Transcription Factors. Front Immunol. 2019; 10: 2530. DOI: https://doi.org/10.3389/fimmu.2019.02530

20. Murphy E.P., Crean D. Molecular interactions between NR4A orphan nuclear receptors and NF-κB are required for appropriate inflammatory responses and immune cell homeostasis. Biomolecules. 2015; 5 (3): 1302-18. DOI: https://doi.org/10.3390/biom5031302

21. Galvin K.C., Dyck L., Marshall N.A., Stefanska A.M., Walsh K.P., Moran B., Higgins S.C., Dungan L.S., Mills K.H.G. Blocking retinoic acid receptor-α enhances the efficacy of a dendritic cell vaccine against tumours by suppressing the induction of regulatory T cells. Cancer Immunol Immunother. 2013; 62 (7): 1273-82. DOI: https://doi.org/10.1007/S00262-013-1432-8

22. Gynther P., Toropainen S., Matilainen J.M., Seuter S., Carlberg C., Väisänen S. Mechanism of 1α,25-dihydroxyvitamin D(3)-dependent repression of interleukin-12B. Biochim Biophys Acta. 2011; 1813 (5): 810-8. DOI: https://doi.org/10.1016/j.bbamcr.2011.01.037

23. Rafique A., Rejnmark L., Heickendorff L., Møller H.J. 25(OH)D3 and 1.25(OH)2D3 inhibits TNF-α expression in human monocyte derived macrophages. PLoS One. 2019; 14 (4): e0215383. DOI: https://doi.org/10.1371/journal.pone.0215383

24. Litvak V., Ramsey S.A., Rust A.G., Zak D.E., Kennedy K.A., Lampano A.E., Nykter M., Shmulevich I., Aderem A. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol. 2009; 10 (4): 437-43. DOI: https://doi.org/10.1038/ni.1721

25. Pello O.M. Macrophages and c-Myc cross paths. Oncoimmunology. 2016; 5 (6): e1151991. DOI: https://doi.org/10.1080/2162402x.2016.1151991

26. Kobayashi T., Matsuoka K., Sheikh S.Z., Elloumi H.Z., Kamada N., Hisamatsu T., Hansen J.J., Doty K.R., Pope S.D., Smale S.T., Hibi T., Rothman P.B., Kashiwada M., Plevy S.E. NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity. J Immunol. 2011; 186 (8): 4649-55. DOI: https://doi.org/10.4049/jimmunol.1003888

27. Ray N., Kuwahara M., Takada Y., Maruyama K., Kawaguchi T., Tsubone H., Ishikawa H., Matsuo K. c-Fos suppresses systemic inflammatory response to endotoxin. Int Immunol. 2006; 18 (5): 671-7. DOI: https://doi.org/10.1093/intimm/dxl004

28. Zhu X., Huang B., Zhao F., Lian J., He L., Zhang Y. Ji L., Zhang J., Yan X., Zeng T., Ma C., Liang Y., Zhang C., Lin J. p38-mediated FOXN3 phosphorylation modulates lung inflammation and injury through the NF-κB signaling pathway. Nucleic Acids Res. 2023; 51 (5): 2195-214. DOI: https://doi.org/10.1093/nar/gkad057

29. Sharif-Askari E., Vassen L., Kosan C., Khandanpour C., Gaudreau M.-C., Heyd F., Okayama T., Jin J., Rojas M.E.B., Grimes H.L., Zeng H., Möröy T. Zinc finger protein Gfi1 controls the endotoxin-mediated Toll-like receptor inflammatory response by antagonizing NF-kappaB p65. Mol Cell Biol. 2010; 30 (16): 3929-42. DOI: https://doi.org/10.1128/mcb.00087-10

30. Cao S., Liu J., Chesi M., Bergsagel P.L., Ho I.-C., Donnelly R.P., Ma X. Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-Maf fibrosarcoma. J Immunol. 2002; 169 (10): 5715-25. DOI: https://doi.org/10.4049/jimmunol.169.10.5715

31. Ricote M., Li A.C., Willson T.M., Kelly C.J., Glass C.K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998; 391 (6662): 79-82. DOI: https://doi.org/10.1038/34178

32. Wong M.M.K., Joyson S.M., Hermeking H., Chiu S.K. Transcription factor AP4 mediates cell fate decisions: to divide, age, or die. cancers (Basel). 2021; 13 (4): 1-15. DOI: https://doi.org/10.3390/cancers13040676

33. Chen H.Z., Tsai S.Y., Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009; 9 (11): 785. DOI: https://doi.org/10.1038/nrc2696

34. Liu L., Luc Y., Martinez J., Bi Y., Lian G., Wang T., Milasta S., Wang J., Yang M., Liu G., Green D.R., Wang R. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc Natl Acad Sci U. S. A. 2016; 113 (6): 1564-9. DOI: https://doi.org/10.1073/pnas.1518000113

35. Eferl R., Wagner E.F. AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer. 2003; 3 (11): 859-68. DOI: https://doi.org/10.1038/NRC1209

36. Rönsch K., Jägle S., Rose K., Seidl M., Baumgartner F., Freihen V., Yousaf A., Metzger E., Lassmann S., Schüle R., Zeiser R., Michoel T., Hecht A. SNAIL1 combines competitive displacement of ASCL2 and epigenetic mechanisms to rapidly silence the EPHB3 tumor suppressor in colorectal cancer. Mol. Oncol. 2015; 9 (2): 335-54. DOI: https://doi.org/10.1016/J.molonc.2014.08.016

37. Sobocińska J., Molenda S., Machnik M., Oleksiewicz U. KRAB-ZFP transcriptional regulators acting as oncogenes and tumor suppressors: an overview. Int J Mol Sci. 2021; 22 (4): 1-27. DOI: https://doi.org/10.3390/ijms22042212

38. Rabani M., Levin J.Z., Fan L., Adiconis X., Raychowdhury R., Garber M., Gnirke A., Nusbaum C., Hacohen N., Friedman N., Amit I., Regev A. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol. 2011; 29 (5): 436-42. DOI: https://doi.org/10.1038/nbt.1861

39. Zubiaga A.M., Belasco J.G., Greenberg M.E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol. 1995; 15 (4): 2219-30. DOI: https://doi.org/10.1128/mcb.15.4.2219

40. Bai X.Z., Zhang J.L., Liu Y., Zhang W., Li X.Q., Wang K.J., Cao M.Y., Zhang J.N., Han F., Shi J.H., Hu D.H. MicroRNA-138 Aggravates inflammatory responses of macrophages by targeting SIRT1 and regulating the NF-κB and AKT pathways. Cell Physiol Biochem. 2018; 49 (2): 489-500. DOI: https://doi.org/10.1159/000492988

41. Huang T., Pu Q., Zhou C., Lin P., Gao P., Zhang X., Chu Y., Yue B., Wu M. MicroRNA-302/367 cluster impacts host antimicrobial defense via regulation of mitophagic response against pseudomonas aeruginosa infection. Front Immunol. 2020; 11: 569173. DOI: https://doi.org/10.3389/fimmu.2020.569173

42. Du J., Jiang H., Wang B. Long Non-coding RNA GAS5/miR-520-3p/SOCS3 axis regulates inflammatory response in lipopolysaccharide-induced macrophages. Biochem Genet. 2022; 60 (5): 1793-808. DOI: https://doi.org/10.1007/S10528-021-10179-Z

43. Ma W., Liu B., Li J., Jiang J., Zhou R., Huang L., Li X., He X., Zhou Q. MicroRNA-302c represses epithelial-mesenchymal transition and metastasis by targeting transcription factor AP-4 in colorectal cancer. Biomed Pharmacother. 2018; 105: 670-6. DOI: https://doi.org/10.1016/J.Biopha.2018.06.025

44. Gao X., Wang X.L. Dexmedetomidine promotes ferroptotic cell death in gastric cancer via hsa_circ_0008035/miR-302a/E2F7 axis. Kaohsiung J Med Sci. 2023; 39 (4): 390-403. DOI: https://doi.org/10.1002/kjm2.12650

45. Dong Y., Zou J., Su S., Huang H., Deng Y., Wang B., Li W. MicroRNA-218 and microRNA-520a inhibit cell proliferation by downregulating E2F2 in hepatocellular carcinoma. Mol Med Rep. 2015; 12 (1): 1016-22. DOI: https://doi.org/10.3892/mmr.2015.3516

46. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011; 473 (7347): 337-42. DOI: https://doi.org/10.1038/nature10098

47. Sung M.H., Li N., Lao Q., Gottschalk R.A., Hager G.L., Fraser I.D.C. Switching of the relative dominance between feedback mechanisms in lipopolysaccharide-induced NF-κB signaling. Sci Signal. 2014; 7 (308): ra6. DOI: https://doi.org/10.1126/scisignal.2004764

48. Pramanik R., Asplin J.R., Lindeman C., Favus M.J., Bai S., Coe F.L. Lipopolysaccharide negatively modulates vitamin D action by down-regulating expression of vitamin D-induced VDR in human monocytic THP-1 cells. Cell. Immunol. 2004; 232 (1-2): 137-43. DOI: https://doi.org/10.1016/j.cellimm.2005.03.004

49. Draijer C., Penke L.R.K., Peters-Golden M. Distinctive effects of GM-CSF and M-CSF on proliferation and polarization of two major pulmonary macrophage populations. J Immunol. 2019; 202 (9): 2700-9. DOI: https://doi.org/10.4049/jimmunol.1801387

50. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005; 5 (12): 953-64. DOI: https://doi.org/10.1038/nri1733

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»