Suppression of respiratory syncytial virus infection in vitro by small interfering RNAs complexed with bifunctional peptide carrier

Abstract

Introduction. Respiratory syncytial virus (RSV) is one of the most common pathogens affecting the upper and lower respiratory tract. One of the promising approaches to the creation of antiviral drugs is the use of small interfering RNA (siRNA) molecules that can specifically block the expression of virus genes. Another approach is the use of natural and synthetic peptides as antiviral agents. Notably, peptides can possess several biological properties. For example, we showed that the cationic dendrimeric peptide LTP not only exhibited antiviral properties against RSV, but was also able to transport nucleic acids into epithelial cells.

The aims of this study were to create a complex of bifunctional peptide LTP and siRNA molecules directed against vital RSV genes and to study its antiviral properties in vitro.

Material and methods. The optimal ratio of the component in the siRNA/peptide complex was determined by eukaryotic cell transfection. The toxic effect of the complex on cells was studied by the standard in vitro method (MTT-test). The antiviral properties of the complex were evaluated in the in vitro model of RSV infection. Viral load was assessed by titration on a monolayer of sensitive cells and by quantitative PCR analysis.

Results. We have shown that the optimal ratio of components in the siRNA/LTP complex is 1/12.5 by weight. With this ratio siRNA and peptide molecules form nanostructures with a diameter of 714 ± 125 nm, which have a positive charge of 16.9 ± 6.71 mV. Such physicochemical characteristics allow the complex to penetrate into cells. It was demonstrated that the complex and its individual components are non-cytotoxic in concentrations that have an antiviral effect. We showed that the siRNA/peptide complex provided a more pronounced suppression of virus replication compared to the free peptide. The enhanced antiviral effect of the complex is achieved due to the fact that the peptide has its own antiviral properties and additionally transports siRNA molecules blocking the replication of the virus genome into infected cells.

Conclusion. The complex of bifunctional LTP peptide and siRNA molecules directed against the vital RSV genes provides a more pronounced antiviral effect compared to peptide alone.

Keywords:respiratory syncytial virus; cationic peptides; antiviral peptides; transfection; siRNA; RNA-interference

For citation: Timotievich E.D., Shilovskiy I.P., Yumashev K.V., Kovchina V.I., Nikolskii A.A., Kaganova M.M., Rusak T.E., Andreev S.M., Smirnov V.V., Sergeev I.V., Maerle A.V., Kofiadi I.A., Shatilov A.A., Shatilova A.V., Kudlay D.A., Khaitov M.R. Suppression of respiratory syncytial virus infection in vitro by small interfering RNAs complexed with bifunctional peptide carrier. Immunologiya. 2023; 44 (5): 545–56. DOI: https://doi.org/10.33029/1816-2134-2023-44-5-545-556 (in Russian)

Funding. The study was supported by Russian Science Foundation grant No. 22-25-00182, https://rscf.ru/project/22-25-00182.

Conflict of interests. The authors declare no conflict of interests.

Authors contribution. Study conception and design – Shilovskiy I.P., Smirnov V.V., Khaitov M.R.; material collection and processing – Timotievich E.D., Nikolskii A.A., Kovchina V.I., Yumashev K.V., Kaganova M.M., Rusak T.E., Shatilov A.A., Shatilova A.V.; statistical processing – Andreev S.M., Kofiadi I.A.; manuscript preparation – Timotievich E.D., Shilovskiy I.P.; editing – Kudlay D.A., Sergeev I.V., Maerle A.V.

References

1. Shi T., McAllister D.A., OBrien K.L., Simoes E.F., Madhi S.A., Gessner B.D., Polack F.P., Balsells E., Acacio S., Aguayo C., Alassani I., Ali A., Antonio M., Awasthi S., Awori J.O., Azziz-Baumgartner E., Baggett H.C., Baillie V.L., Balmaseda A. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. The Lancet. 2017; 390 (10098): 946–58. DOI:10.1016/S0140-6736(17)30938-8.

2. Halasa N.B., Williams J.V., Wilson G.J., Walsh W. F., Schaffner W., Wright P. F. Medical and economic impact of a respiratory syncytial virus outbreak in a neonatal intensive care unit. Pediatric Infectious Disease Journal. 2005; 24 (12): 1040–4. DOI:10.1097/01.inf.0000190027.59795.ac.

3. Watson A., Wilkinson T.A. Respiratory viral infections in the elderly. Ther Adv Respir Dis. 2021; 15: 1-17. DOI:10.1177/1753466621995050

4. Muralidharan A., Li C., Wang L., Li X. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. 2016; 16 (4): 351–60. DOI:10.1080/14760584.2017.1260452.

5. Tejada S., Martinez-Reviejo R., Karakoc H.N., Peña-López Y., Manuel O., Rello J. Ribavirin for Treatment of Subjects with Respiratory Syncytial Virus-Related Infection: A Systematic Review and Meta-Analysis. Advances in Therapy. 2022; 39 (9): 4037–51. DOI:10.1007/s12325-022-02256-5.

6. Janai H.K., Marks M.I., Zaleska M., Stutman H.R. Ribavirin: adverse drug reactions, 1986 to 1988. Pediatr Infect Dis J. 1990; 9 (3): 209–11. PMID: 2139930.

7. Paton J. To Palivizumab or not to Palivizumab – that is the question. Paediatric Respiratory Reviews. 2013; 14 (2): 126–7. DOI:10.1016/j.prrv.2012.12.004.

8. Yang C.F., Wang C.K., Malkin E., Schickli J.H., Shambaugh C., Zuo F., Galinski M.S., Dubovsky F., Tang R.S. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine. Vaccine. 2013; 31 (26): 2822–7. DOI:10.1016/j.vaccine.2013.04.006.

9. Huang K., Incognito L., Cheng X., Ulbrandt N.D., Wu H. Respiratory Syncytial Virus-Neutralizing Monoclonal Antibodies Motavizumab and Palivizumab Inhibit Fusion. J Virol. 2010; 84 (16): 8132–40. DOI:10.1128/JVI.02699-09.

10. Hannon G.J. RNA interference. Nature. 2002; 418 (6894): 244–51. DOI: 10.1038/418244a.

11. Khaitov M., Nikonova A., Shilovskiy I., Kozhikhova K., Kofiadi I., Vishnyakova L., Nikolsky A., Gattinger P., Kovchina V., Barvinskaya E., Yumashev K., Smirnov V., Maerle A., Kozlov I., Shatilov A., Timofeeva A., Andreev S., Koloskova O., Kuznetsova N., Vasina D., Nikiforova M., Rybalkin S., Sergeev I., Trofimov D., Martynov A., Berzin I., Gushchin V., Kovalchuk A., Borisevich S., Valenta R., Khaitov R., Skvortsova V. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021; 76 (9): 2840-54. DOI: https://doi.org/10.1111/all.14850

12. Khaitov M., Nikonova A., Kofiadi I., Shilovskiy I. Smirnov V., Elisytina O., Maerle A., Shatilov A., Shatilova A., Andreev S., Sergeev I., Trofimov D., Latysheva T., Ilyna N., Martynov A., Rabdano S., Ruzanova E., Savelev N., Pletiukhina I., Safi A., Ratnikov A., Gorelov V., Kaschenko V., Kucherenko N., Umarova I., Moskaleva S., Fabrichnikov S., Zuev O., Pavlov N., Kruchko D., Berzin I., Goryachev D., Merkulov V., Shipulin G., Udin S., Trukhin V., Valenta R., Skvortsova V. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy. 2023; 78 (6): 1639-53. DOI:10.1111/all.15663.

13. Shilovskiy I.P., Andreev S.M., Kozhikhova K.V., Nikolskii A.A., Khaitov M.R. Prospects for the Use of Peptides against Respiratory Syncytial Virus. Mol Biol. 2019; 53 (4): 484–500. DOI:10.1134/S002689841904013X.

14. Kozhikhova K.V., Shilovskiy I.P., Shatilov A.A., Timofeeva A.V., Turetskiy E.A., Vishniakova L.I., Nikolskii A.A., Barvinskaya E.D., Karthikeyan S., Smirnov V.V., Kudlay D.A., Andreev S.M., Khaitov M.R. Linear and dendrimeric antiviral peptides: design, chemical synthesis and activity against human respiratory syncytial virus. J Mater Chem B. 2020; 8 (13): 2607-17. DOI:10.1039/c9tb02485a.

15. Shilovskiy I.P., Yumashev K.V., Kozhikhova K.V., Vishnyakova L.I., Smirnov V.V., Gudima G.O., Brylina V.E., Kaganova M.M., Nikolsky A.A., Timotievich E.D., Kovchina V.I., Rusak T.E., Shatilova A.V., Shatilov A.A., Andreev S.M., Kudlay D.A., Khaitov M.R. A synthetic peptide that mimics the antigenic site of F protein suppresses respiratory syncytial virus infection in experiments in vitro. Immunologiya. 2023; 44 (2): 134–46. DOI:10.33029/0206-4952-2023-44-2-134-146. (in Russian)

16. Pärn K., Eriste E., Langel Ü. The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides. Cell-Penetrating Peptides. 2015; 1324: 223-45. DOI:10.1007/978-1-4939-2806-4_15.

17. Kozhikhova K.V., Andreev S.M., Shilovskiy I.P., Timofeeva A.V. Gaisina A.R., Shatilov A.A., Turetskiy E.A., Andreev I.M., Smirnov V.V., Dvornikov A.S., Khaitov M.R. A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells. Org Biomol Chem. 2018; 16 (43): 8181–90. DOI:10.1039/c8ob02039f.

18. Shilovskiy I.P., Mazurov D.V., Khaitov M.R. Development of vector constructs for respiratory syncytial virus P-gene silencing. Pathological physiology and experimental therapy. 2010; 4: 11–6. (in Russian)

19. Hacking D., Hull J. Respiratory syncytial virus - Viral biology and the host response. Journal of Infection. 2002; 45 (1): 18–24. DOI:10.1053/jinf.2002.1015.

20. Van Drunen Littel-Van Den Hurk S., Watkiss E.R. Pathogenesis of respiratory syncytial virus. Current Opinion in Virology. 2012; 2 (3): 300–5. DOI:10.1016/j.coviro.2012.01.008.

21. Khaitov M.R., Shilovskiy I.P., Nikonova A.A., Shershakova N.N. Kamyshnikov O.Y., Babakhin A.A., Zverev V.V, Johnston S.L., Khaitov R.M. Small interfering RNAs targeted to interleukin-4 and respiratory syncytial virus reduce airway inflammation in a mouse model of virus-induced asthma exacerbation. Hum Gene Ther. 2014; 25 (7): 642–50. DOI:10.1089/hum.2013.142.

22. Shilovskiy I.P., Andreev S.M., Kozhikhova K.V., Barvinskaia E.D. Nikolskii A.A., Khaitov R.M., Kudlay D.A., Khaitov M.R. Dendrimeric peptide LTP exhibits potent antiviral properties against respiratory syncytial virus. Allergy. 2019; 74 (S106): 1544.

23. Koloskova O.O., Nosova A.S., Sebyakin Y.L., Ilyukhina A.A. Shilovskiy I.P., Khaitov M.R. Liposomal siRNA delivery systems (Review). Russian Journal of Biopharmaceuticals. 2017; 9 (5): 3-10.

24. Shilovskiy I.P., Bashkatova Yu.N., Mazurov D.V., Faizuloev E.B., Khaitov M.R. A Lentiviral system for shRNA delivery ensures in vitro suppression of RSV replication by activation of the mechanism of RNA interference. Immunologiya. 2011; 32(1): 6–11. (in Russian)

25. DeVincenzo J., Cehelsky J.E., Alvarez R., Elbashir S., Harborth J., Toudjarska I., Nechev L., Murugaiah V., Vliet A.V., Vaishnaw A.K., Meyers R. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res. 2008; 77 (3): 225–31. DOI:10.1016/j.antiviral.2007.11.009.

26. DeVincenzo J., Lambkin-Williams R., Wilkinson T., Cehelsky J., Nochur S., Walsh E., Meyers R., Gollob J., Vaishnaw A. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010; 107 (19): 8800–5. DOI:10.1073/pnas.0912186107.

27. Simon A., Glanville A., Zamora M., Hodges T., Arcasoy S., Musk M., Sommerwerck U., DeVincenzo J., Karsten V., Shah S., Cehelsky J., Nochur S., Gollob J., Vaishnaw A., Gottlieb J. Results of a phase 2b multi-center, randomized, double-blind, placebo-controlled study of an RNAi therapeutic, ALN-RSV01, in respiratory syncytial virus (RSV)-infected lung transplant patients. European respiratory journal. 2012; 40: 1–17.

28. Gottlieb J., Zamora M.R., Hodges T., Musk A.W., Sommerwerk U., Dilling D., Arcasoy S., DeVincenzo J., Karsten V., Shah S., Bettencourt B.R., Cehelsky J., Nochur S., Gollob J., Vaishnaw A., Simon A.R., Glanville A.R. ALN-RSV01 for Prevention of Bronchiolitis Obliterans Syndrome after Respiratory Syncytial Virus Infection in Lung Transplant Recipients. The Journal of Heart and Lung Transplantation 2016; 35 (2): 213–21. DOI:10.1016/J.HEALUN.2015.08.012.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»