Perspective of the use of M. leprae recombinant proteins in serodiagnostics of leprae

Abstract

Introduction. Leprae is a chronic granulomatous disease caused by Mycobacterium leprae (M. leprae), affecting ectodermal derivatives (primarily peripheral nerves and skin), often leading to disability. The most important tool for laboratory control of leprae is immunodiagnostics. Using bioinformatics and comparative genomics, it was identified and cloned genes encoding proteins unique to the lepra pathogen and potentially the most immunogenic. It was proposed that recombinant candidate antigens unique to M. leprae, such as ML0050 and ML0576, could serve as appropriate targets for measuring specific cellular and humoral immunity to M. leprae.

Аim. In this work, we aimed to obtain recombinant M. leprae antigens ML0050, ML0576 and the ML0050–ML0576 fusion recombinant protein, conjugated with BSA, and evaluate their diagnostic potential for serodiagnosticis of leprae.

Material and methods. Molecular genetics and immunobiochemical methods were used. We used blood sera of leprosy and tuberculosis patients and also sera of healthy donors.

Results. The recombinant M. leprae antigens ML0050 and ML0576 and the recombinant fusion protein ML0050–ML0576 conjugated to bovine serum albumin were evaluated in the determination of human IgG, IgM and IgA antibodies against the M. leprae in an enzyme immunoassay and immunochromatographic assay with sera from 15 leprae patients, 25 tuberculosis patients and 30 healthy donors.

Conclusion. The results showed the possibility of using these recombinant proteins as antigens for serodiagnostics of leprae.

Keywords:ELISA; immunochromatographic analysis; leprosy; Mycobacterium leprae; ML0050; ML0576; ML0050–ML0576; recombinant antigens; serological immunodiagnostics

For citation: Korolyova-Ushakova A.G., Panfertsev E.A., Baranova E.V., Sheviakov A.G., Gorbatov A.A., Ignatov S.G., Biketov S.F. Perspective of the use of M. leprae recombinant proteins in serodiagnostics of leprae. Immunologiya. 2023; 44 (5): 616–25. DOI: https://doi.org/10.33029/1816-2134-2023-44-5-616-625 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Author’ contribution. Conception and design of the study, editing, approval of the final version of the article – Baranova E.V., Ignatov S.G. Biketov S.F.; text writing, material collection and processing – KorolyovaUshakova A.G., Panfertsev E.A., Sheviakov A.G., Gorbatov A.A.

References

1. Leprosy – World Health Organization. URL: https://www.who.int/news-room/fact-sheets/detail/leprosy.

2. Ridley D.S., Jopling W.H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966; 3 (34): 255–73. PMID: 5950347.

3. WHO Expert Committee on Leprosy. World Health Organization. 1998; Geneva, Switzerland. URL: https://apps.who.int/iris/handle/10665/42060.

4. Espinosa O.A., Ferreira S.B.M., Palacio F.G.L., et al. Accuracy of enzyme-linked immunosorbent assays (ELISAs) in detecting antibodies against Mycobacterium leprae in leprosy patients: a systematic review and meta-analysis. Can J Infect Dis Med Microbiol. 2018; ID 9828023. Open Access. DOI: https://doi.org/10.1155/2018/9828023

5. Spencer J.S., Duthie M.S., Geluk A., Balagon M.F., Kim H.J., Wheat W.H., Chatterjee D., Jackson M., Li W., Kurihara J.N., Maghanoy A., Mallari I., Saunderson P., Brennan P.J., Dockrell H.M. Identification of serological biomarkers of infection, disease progression and treatment efficacy for leprosy. Mem Inst Oswaldo Cruz. 2012; 107, Suppl 1: 79–89. DOI: https://doi.org/10.1590/s0074-02762012000900014.

6. Bobosha K., Tjon Kon Fat E.M., van den Eeden S.J., Bekele Y., van der Ploeg-van Schip J.J., de Dood C.J., Dijkman K., Franken K.L., Wilson L., Aseffa A., Spencer J.S., Ottenhoff T.H., Corstjens P.L., Geluk A. Field-evaluation of a new lateral flow assay for detection of cellular and humoral immunity against Mycobacterium leprae. PLoS Negl Trop Dis. 2014; 8 (5): e2845. DOI: https://doi.org/10.1371/journal.pntd.0002845

7. Geluk A. Challenges in immunodiagnostic tests for leprosy. Expert Opin Med Diagn. 2013; 7 (3): 265–74. DOI: https://doi.org/10.1517/17530059.2013.786039

8. Reece S.T., Ireton G., Mohamath R., Guderian J., Goto W., Gelber R., Groathouse N., Spencer J., Brennan P., Reed S.G. ML0405 and ML2331 are antigens of Mycobacterium leprae with potential for diagnosis of leprosy. Clin Vaccine Immunol. 2006; 13 (3): 333–40. DOI: https://doi.org/10.1128/CVI.13.3.333-340.2006

9. Cole S.T., Eiglmeier K., Parkhill J., James K.D., Thomson N.R., Wheeler P.R., Honoré N., Garnier T., Churcher C., Harris D., Mungall K., Basham D., Brown D., Chillingworth T., Connor R., Davies R.M., Devlin K., Duthoy S., Feltwell T., Fraser A., Hamlin N., Holroyd S., Hornsby T., Jagels K., Lacroix C., Maclean J., Moule S., Murphy L., Oliver K., Quail M.A., Rajandream M.A., Rutherford K.M., Rutter S., Seeger K., Simon S., Simmonds M., Skelton J., Squares R., Squares S., Stevens K., Taylor K., Whitehead S., Woodward J.R., Barrell B.G. Massive gene decay in the leprosy bacillus. Nature. 2001; 409(6823): 1007–11. DOI: https://doi.org/10.1038/35059006

10. Barbosa M.D.S, de Sousa I.B.A., Simionatto S., Borsuk S., Marchioro S.B. Recombinant polypeptide of Mycobacterium leprae as a potential tool for serological detection of leprosy. AMB Express. 2019; 9 (1): 201. DOI: https://doi.org/10.1186/s13568-019-0928-9

11. Geluk A., Meijgaarden K.E., Franken K.L., Wieles B., Arend S.M., Faber W.R., Naafs B., Ottenhoff T.H. Immunological crossreactivity of the Mycobacterium leprae CFP-10 with its homologue in Mycobacterium tuberculosis. Scand. J. Immunol. 2004; 59 (1): 66–70. DOI: https://doi.org/10.1111/j.0300-9475.2004.01358.x

12. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227 (5259): 680–5. DOI: https://doi.org/10.1038/227680a0

13. Towbin H.T., Staehelin T.T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U.S.A. 1979; 76 (9): 4350–4. DOI: https://doi.org/10.1073/pnas.76.9.4350

14. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193 (1): 26–575. PMID: 14907713

15. Abronina P.I., Podvalnyy N.M., Mel’nikova T.M., Zinin A.I., Fedina K.G., Kachala V.V., Torgov V.I., Kononov L.O. Synthesis of covalent conjugates of hexaarabinofuranoside with proteins and their testing as antigens for serodiagnosis of tuberculosis. Russ Chem Bull. 2010; 59: 2333–7. DOI: https://doi.org/10.1007/s11172-010-0397-4

16. Kondakov N.N., Mel’nikova T.M., Chekryzhova T.V., Mel’nikova M.V., Zinin A.I., Torgov V.I., Chizhov A.O., Kononov L.O. Synthesis of a disaccharide of phenolic glycolipid from Mycobacterium leprae (PGL-I) and its conjugates with bovine serum albumin. Russ Chem Bull. 2015; 64: 114–28. DOI: https://doi.org/10.1007/s11172-015-0991-6

16. Kondakov N.N., Mel’nikova T.M., Chekryzhova T.V., Mel’nikova M.V., Zinin A.I., Torgov V.I., Chizhov A.O., Kononov L.O. Synthesis of a disaccharide of phenolic glycolipid from Mycobacterium leprae (PGL-I) and its conjugates with bovine serum albumin. Russ Chem Bull. 2015; 64: 114–28. DOI: https://doi.org/10.1007/s11172-015-0991-6

17. Королёва-Ушакова А.Г., Баранова Е.В., Игнатов С.Г., Соловьёв П.В., Кондаков Н.Н., Мельникова Т.М., Абронина П.И., Подвальный Н.М., Кононов Л.О., Бикетов С.Ф. Сравнительная характеристика диагностического потенциала микобактериальных синтетических антигенов для серодиагностики лепры и туберкулеза. Прикладная биохимия и микробиология. 2019; 55: 608–16. DOI: https://doi.org/10.1134/S0555109919060096 [Korolyova-Ushakova A.G.,Baranova E.V., Ignatov S.G., Soloviev P.V., Kondakov N.N., Mel’nikova T.M., Abronina P.I., Podval’nyi N.M., Kononov L.O., Biketov S.F. Comparative characteristics of the diagnostic potential of mycobacterial synthetic antigens for the seroriagnosis of lepra and tuberculosis. Appl Biochem Microbiol. 2019; 55: 696–703. DOI: https://doi.org/10.1134/s0003683819060097 (in Russian)]

18. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973; 241 (105): 20–2. DOI: https://doi.org/10.1038/physci241020a0

19. Hermanson G.T. Bioconjugate techniques. Acad Press. 2013; DOI: https://doi.org/10.1016/b978-0-12-342335-1.x5000-3

20. Fonseca A.B., Simon M.D., Cazzaniga R.A., de Moura T.R, de Almeida R.P., Duthie M.S., Reed S.G., de Jesus A.R. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty. 2017; 6 (1): 5. DOI: https://doi.org/10.1186/s40249-016-0229-3

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»