The role of costimulation blockade in transplantology: from experiment to clinic

Abstract

The review presents an analysis of the current state of the problem of using costimulation inhibitors to prevent graft rejection. We have shown the role of costimulatory molecules in the development of transplant rejection, as well as the success of applying costimulation blockers in experimental models (mice, non-human primates) and in clinical trials.

The presented data indicate new approaches in the treatment of transplant rejection using costimulation blockers. These include inhibitors of interactions CD80/CD86 – CD28, CD40 – CD154, ICOS – ICOS-L, OX40 – OX40L, 4-1BB – 4-1BBL, etc.

It seems promising to use hematopoietic stem cell transplantation with costimulation blockers, the combined use of which can achieve donor chimerism with the formation of transplantation tolerance. This will improve the prognosis and quality of life of allograft recipients, and will completely cancel immunosuppressive therapy.

Keywords:costimulation blockade; mice; non-human primates; transplantation

For citation: Grinko E.K., Donetskova A.D., Varlachev A.V., Mitin A.N. The role of costimulation blockade in transplantology: from experiment to clinic. Immunologiya. 2023; 44 (5): 626–39. DOI: https://doi.org/10.33029/0206-4952-2023-44-5-626-639 (in Russian)

Funding. The study was performed within the framework of the Immunological Laboratory of the Advanced Research Foundation (Agreement No. 6/129/2018-2019). Donetskova A.D. was supported by the Strategic Academic Leadership Program from RUDN University.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Search and collection of information – Grinko E.K., Mitin A.N.; writing and editing of the text – Donetskova A.D., Varlachev A.V.

References

1. Gautier S.V. Immunosuppression in transplantation of solid organs. Moscow–Tver: Triada, 2011. 610 p. ISBN 978-5-94789-473-8. (in Russian)

2. Sachs D.H., Kawai T., Sykes M. Induction of tolerance through mixed chimerism. Cold Spring Harb Perspect Med. 2014; 4 (1): a015529.

3. Lafferty K.J., Woolnough J. The origin and mechanism of the allograft reaction. Immunol Rev. 1977; 35: 231–62. DOI: https://doi.org/10.1111/j.1600-065x.1977.tb00241.x. PMID: 330389

4. Byazrova M.G., Astakhova E.A., Spiridonova A.B., Vasileva Yu.V., Prilipov A.G., Filatov A.V. IL-21/CD40L stimulation of human B-lymphocytes in vitro and their characteristics. Immunologiya. 2020; 41 (6): 501–10. DOI: https://doi.org/10.33029/0206-4952-2020-41-6-501-510 (in Russian)

5. Donetskova A.D., Nikonova M.F., Sharova N.I., Komogorova V.V., Litvina M.M., Grinko E.K., Kireev B.V., Donetskov A.D., Mitin A.N. Differences in immune response of C57BL/6, В10.D2 (R101) and BALB/с mice to EL-4. Immunologiya. 2022; 43 (5): 558–70. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-558-570 (in Russian)

6. Kozlov I.B., Vatazin A.V., Kildushevsky A.V., Zulkarnaev A.B., Fedulkina V.A., Faenko A.P., Yazdovsky V.V., Gudima G.O., Kofiadi I.A. Analysis of expression of immune system genes that are responsible for activation and inhibition of T-cell immune response in renal transplant recipients after extracorporeal photochemotherapy. Immunologiya. 2020; 41 (1): 20–30. DOI: https://doi.org/10.33029/0206-4952-2020-41-1-20-30 (in Russian)

7. Pilat N., Sayegh M.H., Wekerle T. Costimulatory pathways in transplantation. Semin Immunol. 2011; 23 (4): 293–303. DOI: https://doi.org/10.1016/j.smim.2011.04.002

8. Li Y., Li X.C., Zheng X.X., Wells A.D., Turka L.A., Strom T.B. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med. 1999; 5 (11): 1298–302. DOI: https://doi.org/10.1038/15256

9. Li X.C., Strom T.B., Turk, L.A., Wells A.D. T cell death and transplantation tolerance. Immunity. 2001; 14 (4): 407–16. DOI: https://doi.org/10.1016/s1074-7613(01)00121-2

10. Masson P., Henderson L., Chapman J.R., Craig J.C., Webster A.C. Belatacept for kidney transplant recipients. Cochrane Database Syst Rev. 2014; 11: 1–65. DOI: https://doi.org/10.1002/14651858.CD010699.pub2

11. Linsley P.S., Wallace P.M., Johnson J., Gibson M.G., Greene J.L., Ledbetter J.A., Singh C., Tepper M.A. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 1992; 257 (5071): 792–95. DOI: https://doi.org/10.1126/science.1496399

12. Genovese M.C., Becker J.C., Schiff M., Luggen M., Sherrer Y., Kremer J., Birbara C., Box J., Natarajan K., Nuamah I., Li T., Aranda R., Hagerty D.T., Dougados, M. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005; 353 (11): 1114–23. DOI: https://doi.org/10.1056/NEJMoa050524

13. Rostaing L., Vincenti F., Grinyo J., Rice K.M., Bresnahan B., Steinberg S., Gang S., Gaite L.E., Moal M.C., Mondragon-Ramirez G.A., Kothari J., Pupim L., Larsen C.P. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant. 2013; 13 (11): 2875–83. DOI: https://doi.org/10.1111/ajt.12460

14. Gauvreau G.M., Boulet L.P., Cockcroft D.W., FitzGerald J.M., Mayers I., Carlsten C., Laviolette M., Killian K.J., Davis B.E., Larche M., Kipling C., Dua B., Mosesova S., Putnam W., Zheng Y., Scheerens H., McClintock D., Matthews J.G., O’Byrne P.M. OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin Exp Allergy. 2014; 44 (1): 29–37. DOI: https://doi.org/10.1111/cea.12235

15. Lo D.J., Anderson D.J., Song M., Leopardi F., Farris A.B., Strobert E., Chapin S., Devens B., Karrer E., Kirk A.D. A pilot trial targeting the ICOS-ICOS-L pathway in nonhuman primate kidney transplantation. Am J Transplant. 2015; 15 (4): 984–92. DOI: https://doi.org/10.1111/ajt.13100

16. DeBenedette M.A., Wen T., Bachmann M.F., Ohashi P.S., Barber B.H., Stocking K.L., Peschon J.J., Watts T.H. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol. 1950; 1999163 (9): 4833–41. PMID: 10528184.

17. Xu H., Zhang X., Mannon R. B., Kirk A.D. Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154. J Clin Invest. 2006; 116 (3): 769–74. DOI: https://doi.org/10.1172/JCI27155

18. Lowe M., Badell I.R., Thompson P., Martin B., Leopardi F., Strobert E., Price A.A., Abdulkerim H.S., Wang R., Iwakoshi N.N., Adams A.B., Kirk A.D., Larsen C.P., Reimann K.A. A novel monoclonal antibody to CD40 prolongs islet allograft survival. Am J Transplant. 2012; 12 (8): 2079–87. DOI: https://doi.org/10.1111/j.1600-6143.2012.04054.x

19. del Rio M.L., Buhler L., Gibbons C., Tian J., Rodriguez-Barbosa J.I. PD-1/PD-L1, PD-1/PD-L2, and other co-inhibitory signaling pathways in transplantation. Transpl Int. 2008; 21 (11): 1015–28. DOI: https://doi.org/10.1111/j.1432-2277.2008.00726.x

20. Murphy B.D., Zuker R.M., Borschel G.H. Vascularized composite allotransplantation: an update on medical and surgical progress and remaining challenges. J Plast Reconstr Aesthet Surg. 2013; 66 (11): 1449–55. DOI: https://doi.org/10.1016/j.bjps.2013.06.037

21. Oh B., Furtmuller G.J., Malek V., Fryer M.L., Brayton C., Walczak P., Janowsky M., Brandacher G., Dorafshar, A.H. Split tolerance in a murine model of heterotopic en bloc chest wall transplantation. Plast Reconstr Surg Glob. Open. 2017; 5 (12): e1595. DOI: https://doi.org/10.1097/GOX.0000000000001595

22. Larsen C.P., Steinman R.M., Witmer-Pack M., Hankins D.F., Morris P.J. Austyn J.M. Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Medicine. 1990; 172 (5): 1483–93. DOI: https://doi.org/10.1084/jem.172.5.1483

23. Tung T.H., Mackinnon S.E., Mohanakumar T. Long-term limb allograft survival using anti-CD40L antibody in a murine model. Transplantation. 2003; 75 (5): 644–50. DOI: https://doi.org/10.1097/01.TP.0000053756.90975.8E

24. Lin C.H., Wang Y.L., Anggelia M.R., Chuang W.Y., Cheng H.Y., Mao Q., Zelken J.A., Lin C.H., Zheng X.X., Lee W.P., Brandacher G. Combined Anti-CD154/CTLA4Ig costimulation blockade-based therapy induces donor-specific tolerance to vascularized osteomyocutaneous allografts. Am J Transplant. 2016; 16 (7): 2030–41. DOI: https://doi.org/10.1111/ajt.13694

25. Ito H., Takeuchi Y., Shaffer J., Sykes M. Anti-CD40L monoclonal antibodies can replace anti-CD4 monoclonal antibodies for the nonmyeloablative induction of mixed xenogeneic chimerism. Transplantation. 2006; 82 (2): 251–57. DOI: https://doi.org/10.1097/01.tp.0000226147.69877.6f

26. Pilat N., Klaus C., Schwarz C., Hock K., Oberhuber R., Schwaiger E., Gattringer M., Ramsey H., Baranyi U., Zelger B., Brandacher G., Wrba F., Wekerle T. Rapamycin and CTLA4Ig synergize to induce stable mixed chimerism without the need for CD40 blockade. Am J Transplant. 2015; 15 (6): 1568–79. DOI: https://doi.org/10.1111/ajt.13154

27. Seung E., Mordes J.P., Rossini A.A., Greiner D.L. Hematopoietic chimerism and central tolerance created by peripheral-tolerance induction without myeloablative conditioning. J Clin Invest. 2003; 112 (5): 795–808. DOI: https://doi.org/10.1172/JCI18599

28. George B.M., Kao K.S., Kwon H.S., Velasco B.J., Poyser J., Chen A., Le A.C., Chhabra A., Burnett C.E., Cajuste D., Hoover M., Loh K.M., Shizuru J.A., Weissman I.L. Antibody conditioning enables MHC-mismatched hematopoietic stem cell transplants and organ graft tolerance. Cell Stem Cell. 2019; 25 (2): 185–92: e3. DOI: https://doi.org/10.1016/j.stem.2019.05.018

29. Sho M., Sandner S.E., Najafian N., Salama A.D., Dong V., Yamada A., Kishimoto K., Harada H., Schmitt I., Sayegh M.H. New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg. 2002; 236 (5): 667–75. DOI: https://doi.org/10.1097/00000658-200211000-00018

30. Smiley S.T., Csizmadia V., Gao W., Turka L.A., Hancock W.W. Differential effects of cyclosporine A, methylprednisolone, mycophenolate, and rapamycin on CD154 induction and requirement for NFkappaB: implications for tolerance induction. Transplantation. 2000; 70 (3): 415–19. DOI: https://doi.org/10.1097/00007890-200008150-00005

31. Baskiewicz-Masiuk M., Grymula K., Pius E., Halasa M., Dziedziejko V., Schmidt C.h, Walczak M., Machaliński B. An optimization of protocol for mixed chimerism induction in mice model. Folia Histochem Cytobiol. 2009; 47 (3): 395–400. DOI: https://doi.org/10.2478/v10042-009-0086-z

32. Al-Adra D.P., Anderson C.C. Mixed chimerism and split tolerance: mechanisms and clinical correlations. Chimerism. 2011; 2 (4): 89–101. DOI: https://doi.org/10.4161/chim.2.4.19017

33. Roopenian D., Choi E.Y., Brown A. The immunogenomics of minor histocompatibility antigens. Immunol. Rev. 2002; 190: 86–94. DOI: https://doi.org/10.1034/j.1600-065x.2002.19007.x

34. Youssef A.R., Otley C., Mathieson P.W., Smith R.M. Effector mechanisms in murine allograft rejection: comparison of skin and heart grafts in fully allogeneic and minor histocompatibility antigen-mismatched strain combinations. Transpl Int. 2002; 15 (6): 302–9. DOI: https://doi.org/10.1007/s00147-002-0407-z

35.Bigenzahn S., Pree I., Klaus C., Pilat N., Mahr B., Schwaiger E., Nierlich P., Wrba F., Wekerle T. Minor antigen disparities impede induction of long lasting chimerism and tolerance through bone marrow transplantation with costimulation blockade. J Immunol Res. 2016; 8635721. DOI: https://doi.org/10.1155/2016/8635721

36.Stamenkovic I., Clark E.A., Seed B. A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J. 1989; 8 (5): 1403–10. DOI: https://doi.org/10.1002/j.1460-2075.1989.tb03521.x

37.Clark E.A., Ledbetter J.A. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Natl Acad Sci. USA. 1986; 83: 4494–8. DOI: https://doi.org/10.1073/pnas.83.12.4494

38.Chatzigeorgiou A., Lyberi M., Chatzilymperis G., Nezos, A., Kamper E. PAGE. Biofactors. 2009; 35 (6): 474–83. DOI: https://doi.org/10.1002/biof.62

39.Page A., Srinivasan S., Singh K., Russell M., Hamby K., Deane T., Sen S., Stempora L., Leopardi F., Price A.A., Strobert E., Reimann K.A., Kirk A.D., Larsen C.P., Kean L.S. CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am J Transplant. 2012; 12 (1): 115–25.

40.Ramakrishnan S.K., Page A., Farris A.B. Singh K., Leopardi F., Hamby K., Sen S., Polnett A., Deane T., Song M., Stempora L., Strobert E., Kirk A.D., Larsen C.P., Kean L.S. Evidence for kidney rejection after combined bone marrow and renal transplantation despite ongoing whole-blood chimerism in rhesus macaques. Am J Transplant. 2012; 12 (7): 1755–64. DOI: https://doi.org/10.1111/j.1600-6143.2012.04045.x

41.Badell I.R., Thompson P.W., Turner A.P., Russell M.C., Avila J.G., Cano J.A., Robertson J.M., Leopardi F.V., Strobert E.A., Iwakoshi N.N., Reimann K.A., Ford M.L., Kirk A.D., Larsen C.P. Nondepleting anti-CD40-based therapy prolongs allograft survival in nonhuman primates. Am J Transplant. 2012; 12 (1): 126–35. DOI: https://doi.org/10.1111/j.1600-6143.2011.03736.x

42.Oura T., Yamashita K., Suzuki T., Fukumori D., Watanabe M., Hirokata G., Wakayama K., Taniguchi M., Shimamura T., Miura T., Okimura K., Maeta K., Haga H., Kubota K., Shimizu A., Sakai F., Furukawa H., Todo S. Long-term hepatic allograft acceptance based on CD40 blockade by ASKP1240 in nonhuman primates. Am J Transplant. 2012; 12 (7): 1740–54. DOI: https://doi.org/10.1111/j.1600-6143.2012.04014.x

43.Schwarz C., Muckenhuber M., Wekerle T. Optimizing costimulation blockade-based immunosuppression. Kidney360. 2022; 3 (12): 2005–7. DOI: https://doi.org/10.34067/KID.0005652022

44.Burghuber C.K., Kwun J., Page E.J., Manook M., Gibby A.C., Leopardi F.V., Song M., Farris A.B. 3rd, Hong J.J., Villinger F., Adams A.B., Iwakoshi N.N., Knechtle S.J. Antibody-mediated rejection in sensitized nonhuman primates: modeling human biology. Am J Transplant. 2016; 16 (6): 1726–38. DOI: https://doi.org/10.1111/ajt.13688

45.Bray R.A., Gebel H.M., Townsend R., Roberts M.E., Polinsky M., Yang L., Meier-Kriesche H.U., Larsen C.P. De novo donor-specific antibodies in belatacept-treated vs cyclosporine-treated kidney-transplant recipients: Post hoc analyses of the randomized phase III BENEFIT and BENEFIT-EXT studies. Am J Transplant. 2018; 18 (7): 1783–89. DOI: https://doi.org/10.1111/ajt.14721

46.Freitas A.M., Samy K.P., Farris A.B., Leopardi F.V., Song M., Stempora L., Strobert E.A., Jenkins J.A., Kirk A.D., Cendales L.C. Studies introducing costimulation blockade for vascularized composite allografts in nonhuman primates. Am J Transplant. 2015; 15 (8): 2240–49. DOI: https://doi.org/10.1111/ajt.13379

47.Sasaki H., Oura T., Spitzer T.R., Chen Y.B., Madsen J.C., Allan J., Sachs D.H., Cosimi A.B., Kawai T. Preclinical and clinical studies for transplant tolerance via the mixed chimerism approach. Hum Immunol. 2018; 79 (5): 258–5. DOI: https://doi.org/10.1016/j.humimm.2017.11.008

48.Lowe M.C., Badell I.R., Turner A.P., Thompson P.W., Leopardi F.V., Strobert E.A., Larsen C.P., Kirk A.D. Belatacept and sirolimus prolong nonhuman primate islet allograft survival: adverse consequences of concomitant alefacept therapy. Am J Transplant. 2013; 13 (2): 312–19.

49.Oura T., Ko D.S., Boskovic S., O’Neil J.J., Chipashvili V., Koulmanda M., Hotta K., Kawai K., Nadazdin O., Smith R.N., Cosimi A.B., Kawai T. Kidney versus islet allograft survival after induction of mixed chimerism with combined donor bone marrow transplantation. Cell Transplant. 2016; 25 (7): 1331–41. DOI: https://doi.org/10.3727/096368915X688966

50.Kawai T., Sogawa H., Boskovic S., Abrahamian G., Smith R.N., Wee S.L., Andrews D., Nadazdin O., Koyama I., Sykes M., Winn H.J., Colvin R.B., Sachs D.H., Cosimi A.B. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transplant. 2004; 4 (9): 1391–8. DOI: https://doi.org/10.1111/j.1600-6143.2004.00523.x

51.Kim S.C., Wakwe W., Higginbotham L.B., Mathews D.V., Breeden C.P., Stephenson A.C., Jenkins J., Strobert E., Price K., Price L., Kuhn R., Wang H., Yamniuk A., Suchard S., Farris A.B. 3rd, Pearson T.C., Larsen C.P., Ford M.L., Suri A., Nadler S., Adams A.B. Fc-Silent Anti-CD154 domain antibody effectively prevents nonhuman primate renal allograft rejection. Am J Transplant. 2017; 17 (5): 1182–92. DOI: https://doi.org/10.1111/ajt.14197

52.Schneeberger S., Ninkovic M., Piza-Katzer H., Gabl M., Hussl H., Rieger M., Loescher W., Zelger B., Brandacher G., Ninkovic M., Bonatti H., Boesmueller C., Mark W., Margreiter R. Status 5 years after bilateral hand transplantation. Am J Transplant. 2006; 6 (4): 834–41. DOI: https://doi.org/10.1111/j.1600-6143.2006.01266.x

53.Klintmalm G.B., Feng S., Lake J.R., Vargas H.E., Wekerle T., Agnes S., Brown K.A., Nashan B., Rostaing L., Meadows-Shropshire S., Agarwal M., Harler M.B., Garcia-Valdecasas J.C. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. Am J Transplant. 2014; 14 (8): 1817–27. DOI: https://doi.org/10.1111/ajt.12810

54.Cendales L., Bray R., Gebel H., Brewster L., Elbein R., Farthing D., Song M., Parker D., Stillman A., Pearson T., Kirk A.D. Tacrolimus to belatacept conversion following hand transplantation: a case report. Am J Transplant. 2015; 15 (8): 2250–5. DOI: https://doi.org/10.1111/ajt.13217

55.Grahammer J., Weissenbacher A., Zelger B.G., Zelger B., Boesmueller C., Ninkovic M., Mühlbacher A., Peschel I., Brandacher G., Öfner D., Schneeberger S. Benefits and limitations of belatacept in 4 hand-transplanted patients. Am J Transplant. 2017; 17 (12): 3228–35. DOI: https://doi.org/10.1111/ajt.14440

56.Kirk A.D., Guasch A., Xu H., Cheeseman J., Mead S.I., Ghali A., Mehta A.K., Wu D., Gebel H., Bray R., Horan J., Kean L.S., Larsen C.P., Pearson T.C. Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am J Transplant. 2014; 14 (5): 1142–51. DOI: https://doi.org/10.1111/ajt.12712

57.Rostaing L., Vincenti F., Grinyó J., Rice K.M., Bresnahan B., Steinberg S., Gang S., Gaite L.E., Moal M.C., Mondragón-Ramirez G.A., Kothari J., Pupim L., Larsen C.P. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant. 2013; 13 (11): 2875–83. DOI: https://doi.org/10.1111/ajt.12460

58.Mary C., Coulon F., Poirier N., Dilek N., Martinet B., Blancho G., Vanhove B. Antagonist properties of monoclonal antibodies targeting human CD28: role of valency and the heavy-chain constant domain. MAbs. 2013; 5 (1): 47–55. DOI: https://doi.org/10.4161/mabs.22697

59.Suntharalingam G., Perry M.R., Ward S., Brett S.J., Castello-Cortes A., Brunner M.D., Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006; 355 (10): 1018–28. DOI: https://doi.org/10.1056/NEJMoa063842

60.Lühder F., Huang Y., Dennehy K.M., Guntermann C., Müller I., Winkler E., Kerkau T., Ikemizu S., Davis S.J., Hanke T., Hünig T. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med. 2003; 197 (8): 955–66. DOI: https://doi.org/10.1084/jem.20021024

61.Vanhove B., Poirier N., Soulillou J.P., Blancho G. Selective Costimulation Blockade with antagonist anti-cd28 therapeutics in transplantation. Transplantation. 2019; 103 (9): 1783–89. DOI: https://doi.org/10.1097/TP.0000000000002740

62.Shi R., Honczarenko M., Zhang S., Fleener C., Mora J., Lee S.K., Wang R., Liu X., Shevell D.E., Yang Z., Wang H., Murthy B. Pharmacokinetic, pharmacodynamic, and safety profile of a novel anti-CD28 domain antibody antagonist in healthy subjects. J Clin Pharmacol. 2017; 57 (2): 161–2. DOI: https://doi.org/10.1002/jcph.791

63.Poirier N., Blancho G., Hiance M., Mary C., Van Assche T., Lempoels J., Ramael S., Wang W., Thepenier V., Braudeau C., Salabert N., Josien R., Anderson I., Gourley I., Soulillou J.P., Coquoz D., Vanhove B. First-in-human study in healthy subjects with FR104, a pegylated monoclonal antibody fragment antagonist of CD28. J Immunol. 2016; 197 (12): 4593–02. DOI: https://doi.org/10.4049/jimmunol.1601538

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»