Key role of tumor-associated macrophages in the progression and metastasis of tumors

Abstract

Tumor-associated macrophages (TAM), the predominant leukocyte subclass in solid tumors, show high degree of phenotypic and functional heterogeneity under the influence of the local tumor microenvironment. TAM with antiinflammatory and protumorogenic activity modulate the microenvironment, promote tumor growth, invasion of tissue surrounding the tumor and metastasis to distant sites. They promote angiogenesis, tumor resistance to chemotherapy and radiotherapy and provide a supportive environment for the tumor to avoid immune surveillance. In tumor sites, TAM usually are alternatively activated or M2 macrophages secreting anti-inflammatory cytokines, interleukin (IL) -10, prostaglandin E2 and expressing CD206- and CD163-receptors, as well as CCL2-, CCL17- and CCL22-chemokines involved in attracting regulatory T-cells (Treg). Data from clinical and experimental studies suggest a high TAM density in the tumor with an unfavorable prognosis for patients. The use of TAM as therapeutic targets in many types of tumors is an important strategy based on the selection of agents that either inhibit the attraction of TAM in the primary tumors and metastatic sites or convert protumor TAM to antitumor effector cells.

Keywords:carcinogenesis; tumor-associated macrophages; immunosupression; regulatory factors; immunotherapy; review

Received 06.06.2019 Accepted 16.06.2019

For citation: Bogdanova I.M., Boltovskaya M.N., Rakhmilevich A.L., Artemyeva K.А. Key role of tumor-associated macrophages in the progressing and metastasis of tumors. Immunologiya. 2019; 40 (4): doi: 10.24411/0206-4952-2019-14005.

Acknowlegements. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

References

1. Yona S., Kim K.W., Wolf Y., Mildner A., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013; 38 (1): 78-91. doi: 10.1016/j.immuni.2012.12.001.

2. Ginhoux F., Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014; 14 (6): 392-404. doi: 10.1038/nri3671.

3. Goswami K.K., Ghosh T., Ghosh S., Sarkar M., et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell. Immunol. 2017; 316: 1-10. doi: 10.1016/j.cellimm.2017.04.005.

4. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010; 141 (1): 39-51. doi: 10.1016/j.cell.2010.03.014.

5. Elgert K.D., Alleva D.G., Mullins D.W. Tumor-induced immune dysfunction: macrophage connection. J. Leukoc. Biol. 1998; 64: 275-90.

6. Dwyer A.R., Greenland E.L., Pixley F.J. Promotion of tumor invasion by tumor-associated macrophages: the role of CSF-1- activated phosphatidylinisitol 3 kinase and Src family kinase motility signaling. Cancer (Basel). 2017; 9 (6). pii: E68. doi: 10.3390/cancers9060068.

7. Hagemann T., Robinson S.C., Schulz M., Trümper L., et al. Enhanced invasiveness of breast cancer cell lines upon cocultivation with macrophages is due to TNF-αdependent up regulatijn of matrix metalloproteses. Carcinogenesis. 2004; 25: 1543-9. doi: 10.1093/carcin/bgh146.

8. Goswami S., Sahai E., Wyckoff J.B., Cammer M., et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005; 65 (12): 5278-83. doi: 10.1158/0008-5472.CAN-04-1853.

9. Kluger H.M., Dolled-Filhart M., Rodov S., Kacinski B.M., et al. Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clin. Cancer Res. 2004; 10 (1 Pt 1): 173-7. doi: 10.1158/1078-0432.CCR-0699-3.

10. Zhu Y., Knolhoff B.L., Meyer M.A. CSF-1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014; 74 (18): 5057-69. doi: 10.1158/0008-5472.CAN-13-3723.

11. Hatanaka H., Abe Y., Kamlya T., Morino F., et al. Clinical implication of interleukin (IL)-10 induced by non-small-cell lung cancer. Ann. Oncol. 2000; 9 (5): 815-9. doi: 10.1023/a:1008375208574.

12. Hoeffel G., Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol. 2018; 330: 5-15. doi: 10.1016/j.cellimm.2018.01.001.

13. Zhao Y., Zou W., Du J., Zhao Y. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J. Cell. Physiol. 2018; 233 (10): 6425-39. doi: 10.1002/jcp.26461.

14. Lewis C.E., Pollard J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006; 66 (2): 605-12. doi: 10.1158/0008-5472.CAN-05-4005.

15. Murray P.J. Macrophage polarization. Annu. Rev. Physiol. 2017; 10 (79): 541-66. doi: 10.1146/annurev-physiol-022516-034339.

16. Mantovani A., Biswas S.K., Galdiero M.R., Sica A., et al. Macrophage plasticity and polarization in tissue repair and remodeling. J. Pathol. 2013; 229 (2): 176-85. doi: 10.1002/path.4133.

17. Porta C., Riboldi E., Ippolito A., Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin. Immunol. 2015; 27 (4): 237-48. doi: 10.1016/j.smim.2015.10.003.

18. Liu Y., Can X. The origin and function of tumor-associated macrophages. Cell. Mol. Immunol. 2015; 12 (1): 1-4. doi: 10.1038/cmi.2014.83.

19. Mantovani A., Sozzani S., Locati M., Allavena P., et al. Macrophage polarization : tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends. Immunol. 2002; 23 (11): 549-55. doi: 10.1016/S1471-4906(02)02302-5.

20. Heusinkveld M., van der Burg S.H. Identification and manipulation of tumor associated macrophages in human cancers. J. Transl. Med. 2011; 16 (9): 216. doi: 10.1186/1479-5876-9-216.

21. Lin E.Y., Pollard J.W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007; 67 (11): 5064-6. doi: 10.1158/0008-5472.CAN-07-0912.

22. Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141 (1): 52-67. doi: 10.1016/j.cell.2010.03.015.

23. Valkovic T., Dobrila F., Melato M., Sasso F., et al. Correlation between vascular endothelial growth factor, angiogenesis and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch. 2002; 440 (6): 583-8. doi: 10.1007/s004280100458.

24. Elbarghati L., Murdoch C., Lewis C.E. Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology. 2008; 213 (9-10): 899-908. doi: 10.1016/j.imbio.2008.07.016.

25. Nieves B.J., D’Amore P.A., Bryan B.A. The function of vascular endothelial growth factor. Biofactors 2009; 35 (4): 332-7. doi: 10.1002/biof.46.

26. Yeo E.J., Cassetta L., Qian B.Z., Lewkowich I., et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 2014; 74 (11): 2962-73. doi: 10.1158/0008-5472.CAN-13-2421.

27. Wickoff J.B., Wang Y., Lin E.Y., Li J.F., et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007; 67 (6): 2649-56. doi: 10.1158/0008-5472.CAN-06-1823.

28. De Palma M., Naldini L. Angiopoietin-2 TIEs up macrophages in tumor angiogenesis. Clin. Cancer Res. 2011; 17 (16): 5226-32. doi: 10.1158/1078-0432.CCR-10-0171.

29. Decock J., Thirkettle S., Wagstaff L., Edwards D.R. Matrix metalloproteinases: protective roles in cancer. J. Cell. Mol. Med. 2011; 15 (6): 1254-65. doi: 10.1111/j.1582-4934.2011.01302.x

30. Deryugina E.I., Zajac E., Juncker-Jensen A., Kupriyanova T.A., et al. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia. 2014; 16 (10): 771-88. doi: 10.1016/j.neo.2014.08.013.

31. Condeelis J., Pollard J.W. Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell. 2006; 124 (2): 263-6. doi: 10.1016/j.cell.2006.02.007.

32. Smith H.A., Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J. Mol. Med. (Berl.). 2013; 91 (4): 411-29. doi: 10.1007/s00109-013-1021-5.

33. Nielsen S.R., Schmid M.C. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017; 2017: 9624760. doi: 10.1155/2017/9624760.

34. Guo Q., Jin Z., Yuan Y., Liu R., et al. New mechanisms of tumor-associated macrophages on promoting tumor progression: recent research advances and potential targets for tumor immunotherapy. J. Immunol. Res. 2016; 2016: 9720912. doi: 10.1155/2016/9720912.

35. Desai A., Yan Y., Gerson S.L. Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl. Med. 2019; 8 (1): 75-81. doi: 10.1002/sctm.18-0123.

36. Croci D.O., Salatino M. Tumor immune escape mechanisms that operate during metastasis. Curr. Pharm. Biotechnol. 2011; 12 (11): 1923-36.

37. Киселевский М.В., Власенко Р.Я., Заботина Т.Н.. Кадагидзе З.Г. Прогностическая значимость опухоль-инфильтрирующих лимфоцитов. Иммунология. 2019; 40 (1): 73-82. doi: 10.24411/0206-4952-2019-11009.[Kiselevskiy M.V., Vlasenko R.Ya., Zabotina T.N., Kadagidze Z.G. Prognostic significance of tumor-infiltrating lymphocytes. Immunologiya. 2019; 40 (1): 73-82. (in Russian)]

38. Petty A.J., Yang Y. Tumor-associated macrophages: implication in cancer immunotherapy. Immunotherapy. 2017; 9 (3): 289-302. doi: 10.2217/imt-2016-0135.

39. Curiel T.J., Coukos G., Zou L., Alvarez X., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predict reduced survival. Nat. Med. 2004; 10 (9): 942-9. doi: 10.1038/nm1093.

40. Ng T.H., Britton G.J., Hill E.V., Verhagen J., et al. Regulation of adaptive immunity; the role of interleukin-10. Front. Immunol. 2013; 4: 129. doi: 10.3389/fimmu.2013.00129.

41. Kuang D.M., Zhao Q., Peng C., Xu J., et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 2009; 206 (6): 1327-37. doi: 10.1084/jem.20082173.

42. Dewan M.Z., Vanpouille-Box C., Kawashima N., DiNapoli S., et al. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin. Cancer Res. 2012; 18 (24): 6668-78. doi: 10.1158/1078-0432.CCR-12-0984.

43. Singh M., Khong H., Dai Z., Huang X.F., et al. Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation. J. Immunol. 2014; 193 (9): 4722-31. doi: 10.4049/jimmunol.1401160.

44. Buhtoiarov I.N., Lum H., Berke G., Sondel P.M., et al. Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J. Immunol. 2006; 176 (1): 309-18. doi: 10.4049/jimmunol.176.1.309.

45. Buhtoiarov I.N., Sondel P.M., Wigginton J.M., Buhtoiarova T.N., et al. Antitumor synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumor associated macrophages. Immunology 2011; 132 (2): 226-39. doi: 10.1111/j.1365-2567.2010.03357.x.

46. Rakhmilevich A.L., Baldeshwiler M.J., Van De Voort T.J., Felder M.A.R., et al. Tumor-associated myeloid cells can be activated in vitro and in vivo to mediate antitumor effects. Cancer Immunol. Immunother. 2012; 61: 1683-97. doi: 10.1007/s00262-012-1236-2.

47. Kubota Y., Takubo K., Shimizu T., Ohno H., et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med. 2009; 206 (5): 1089-102. doi: 10.1084/jem.20081605.

48. Strachan D.C., Ruffell B., Oei Y., Bissell M.J., et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology. 2013; 2 (12): e26968. doi: 10.4161/onci.26968.

49. Cannarile M.A., Weisser M., Jacob W., Jegg A.M., et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer. 2017; 5 (1): 53. doi: 10.1186/s40425-017-0257-y.

50. Li X., Yao W., Yuan Y., Chen P., et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017; 66 (1): 157-67. doi: 10.1136/gutjnl-2015-310514.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»